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Abstract

We examine the impact of improved access to electricity on deforestation through the

incentives it creates for farms to switch from cattle grazing to croplands. We generate

a model which elucidates the conditions under which increases in agricultural produc-

tivity can increase the incentives to intensify rather than expand land use and examine

the predictions of that model using county-level data from five waves of the Brazilian

Census of Agriculture and satellite-based measures of land use. We estimate the impact

of rural electrification in Brazil from 1960-2000 and the resulting increases in agricultural

productivity. We show that locations suitable for hydropower generation experienced

improvements in crop yields incentivizing credit-constrained farmers to shift away from

land-intensive cattle-grazing and into cropping. As a result, agricultural land use de-

clined, more native vegetation was protected, and these effects persist 25 years later in

both census and satellite data. Brazil’s deforestation rate would have been almost twice

as large between 1970 and 2000 without the increase in agricultural productivity that re-

sulted from electrification. The conservation benefits of electrification are comparable to

prominent forest conservation policies implemented in Brazil.
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1 Introduction

The rapid loss of tropical forests is one of the most important environmental disasters
of the last century. Tropical deforestation is the second largest source of anthropogenic
greenhouse gas emissions and severely impacts the world’s biodiversity and water
regimes (Smith et al., 2014; Dasgupta, 2021). Around 90 percent of forest loss in the
tropics is from clearing to make space for crops and cattle (Curtis et al., 2018), which
highlights a fundamental tension between conservation and development goals (Frank
and Schlenker, 2016). Improving agricultural productivity is thought to be necessary
for economic development (World Bank, 2007), but whether increased productivity
would exacerbate or alleviate the trade-off between production and conservation is an
open question.

This paper posits a new mechanism through which improvements in agricultural pro-
ductivity could decrease deforestation. Our theory is inspired by the institutional
details of agriculture in Brazil, one of the world’s largest producers of agricultural
commodities. Farms in Brazil engage in two activities that differ in their factor in-
tensities – “cattle grazing” which is land-intensive, and “crop cultivation” which is
more capital-intensive. Productivity shocks biased toward cropping induce credit-
constrained farmers to switch to cultivation and decrease the land allocated to graz-
ing. The shift away from the land-intensive activity decreases overall land demand for
agriculture, ultimately protecting forests. However, increased agricultural productiv-
ity may induce entry into farming on the extensive margin, which makes the overall
effect on deforestation theoretically ambiguous. This motivates our empirical inquiry.

We explore these dynamics of agricultural land use and deforestation taking advan-
tage of the large-scale expansion of the electricity grid into rural areas in Brazil during
the period 1960-2000, which improved agricultural productivity. Electricity directly
benefits agricultural production by enabling farmers to use techniques and equipment
that would otherwise be more costly or infeasible to implement.

To address the endogeneity of infrastructure placement, our identification is based on
an instrument leveraging geographical differences in construction costs of generation
plants and changes in the impact of these costs over time. This strategy, developed
by Lipscomb et al. (2013), takes advantage of the fact that most of the electricity ex-
pansion in Brazil was based on hydropower generation, the costs of which depend on
topographic factors such as water flow and river gradient.1 This allows us to isolate
the variation in grid expansion in Brazil that is attributable to exogenous cost con-
siderations (holding fixed the geographic attributes of each location) and use it as an

1An analogous strategy has been used by the literature that estimates the economic effects of roads (see
e.g., Faber, 2014; Burgess et al., 2015; Baum-Snow et al., 2017; Banerjee et al., 2020).

1



instrument to estimate the effects of farm electrification.

We construct a decennial panel dataset of Brazilian counties from 1960 to 2000, com-
bining (a) historical measures of electricity infrastructure to reconstruct the evolution
of the electrical grid by decade (Lipscomb et al., 2013), (b) five waves of the Brazilian
Census of Agriculture to track farmland expansion, land use within farms, agricultural
output, and input use, and (c) satellite images to characterize land use both inside and
outside farms.

We first document – using data from multiple rounds of the census of agriculture –
that farm electrification improved crop productivity but not the productivity of cat-
tle grazing. We find that the expansion of the electricity grid led to an increase in
agricultural productivity and a slowdown of deforestation in Brazil over the period
1970-2006. There is a 14 percentage point increase in farm electricity access in a county
when the infrastructure arrives, allowing farmers to move away from land-intensive
cattle grazing and shift into cropping. This protects forests by decreasing agricultural
land use overall. Our estimates indicate that a 10 percent increase in a county’s elec-
tricity availability increases the total proportion of land covered by native vegetation
by 3.9 percentage points. Brazil’s forest cover decreased by about 7 percentage points
between 1985 and 2006 (from 76% to 69%), which means that without the increase in
agriculture productivity brought about through the electrification of rural Brazil, the
rate of deforestation could have been 50% larger.

To understand the mechanism underlying these results, we use data from the agricul-
tural census to document how agricultural practices change once farms are electrified.
Electrification leads to increased investment in crop-related capital goods that benefit
from electricity access, such as grain storage facilities (which require humidity control
and temperature control) and irrigation equipment. Crop yields increase as a result.
The relative shift towards cropping is also evident in increased investment in plows
and planting and harvesting machines. In contrast, access to electricity has no effect on
cattle grazing productivity. Land allocated to crop production expands while land al-
located to cattle grazing contracts. Since cattle grazing is land-intensive, the increased
land-use in crops is not sufficient to offset the decline in pastures.

We also use the data to interrogate a few critical assumptions made in the theoretical
model. We use rainfall shocks to show that many Brazilian farmers are indeed credit-
constrained, and data on bank presence to show that our land use results are driven
by the more constrained farmers. We use longer-run data to show that the changes
in land use are not short-lived; they are evident even 25 years after the productivity
shock. Satellite imagery also confirms these patterns.

Our primary contribution is to the longstanding academic and policy debates regard-

2



ing the link between agricultural productivity and deforestation. A prominent article
published in Science, Phalan et al. (2016), begins,

“One potential way to reduce [environmental impacts from agriculture] is
to increase food production per unit area on existing farmland, so as to
minimize farmland area and to spare land for habitat conservation”

This yield intensification effect is sometimes referred to as “Borlaug’s hypothesis”. It
is supported by Foster and Rosenzweig (2003) which shows that income increases,
particularly income gains from agricultural productivity increases, lead to decreases
in deforestation. Abman et al. (2020) shows that an agricultural extension program
aimed at increasing agricultural productivity reduced local deforestation by 14% in
Uganda under similar factor market constraints. Abman and Carney (2020) find that
by increasing agricultural yields, a fertilizer subsidy program reduced pressure on
expansion of farms, and reduced deforestation in Malawi, an environment in which
credit constraints are also known to hold (Giné et al., 2012). We add to the literature by
showing that electrification contributed to the transformation of agriculture from large
grazing lands to higher-intensity cropping in Brazil. Our findings contribute to the
understanding of the mechanisms through which deforestation occurs: the decreases
in deforestation from increased agricultural productivity found in these papers are de-
pendent on a constraining factor such as low access to credit.

On the other hand, improving agricultural productivity could instead incentivize indi-
vidual producers to expand farming in order to increase profits and put greater pressure
on forests, an argument that has been labeled “Boserup’s hypothesis” (Angelsen and
Kaimowitz, 2001). Improvements in the transport infrastructure, reducing the trans-
port costs of agricultural goods, may be an example of this (Pfaff, 1999; Cropper et al.,
1999, 2001; Asher et al., 2020; Souza-Rodrigues, 2019). Increased income may also lead
to deforestation through increases in demand for land-intensive goods; for example,
Alix-Garcia et al. (2013) shows that income transfers from Progressa lead to increased
deforestation. There is a long-standing “environmental Kuznets curve literature on the
trade-offs between economic development and environmental conservation concerns
(Grossman and Krueger, 1991, 1995).

We bring to this debate a plausible theoretical mechanism by which Borlaug’s hypoth-
esis could materialize when farmers are credit-constrained, and then devise an em-
pirical test of this mechanism. It is important to understand whether productivity
improvements in agriculture offer a plausible path out of the fundamental tension be-
tween economic development and environmental conservation goals, because differ-
ent world regions have followed alternative pathways to agricultural output growth.
Figure 1 illustrates how South Asia followed an intensification path, whereby most of
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the gains in food production stemmed from increasing yields. At the other extreme,
Sub-Saharan countries followed the extensification path in which increases in food re-
quired expanding into new agricultural land. Latin American agriculture encroached
on new land until the 1980s, and then shifted towards intensification.

Our contribution is to show a channel through which the intensification of farming
leads to decreased deforestation: differential improvements in crop productivity rela-
tive to land-intensive cattle production decreases land demand from farms in the pres-
ence of credit constraints. In related work Bustos et al. (2016) evaluates the impact of
increases in agricultural productivity on economic growth using an instrumental vari-
able based on the suitability of different agricultural lands to the introduction of ge-
netically modified seeds. They find that the seeds had strong impacts on agricultural
productivity, and this increased agricultural productivity led to increased manufac-
turing productivity. The introduction of genetically modified seeds in Brazil in 1996
post-dates most of the variation in electricity access in our sample, so this increase in
growth from genetically modified seeds was not related to the productivity increases
from electrification. The reduction in deforestation in our context is primarily related
to switching in agricultural production as a result of differential improvements in crop
relative to cattle grazing. This type of switching to optimize productivity is similar
to impacts from irrigation technology in the United States (Lewis and Severnini, 2020;
Hornbeck and Keskin, 2014) and in India (Sekhri, 2011). Badiani and Jessoe (2013)
show that when irrigation technology arrives, initially farmers increase production by
irrigating existing crops, and eventually by planting more profitable highly irrigated
crops. Other channels may also be relevant, such as increases in manufacturing pro-
ductivity and the resulting migration of farm workers to nearby cities and changes in
the development of non-farm lands.

Our paper also illuminates a creative policy tool to pursue forest conservation. Pre-
venting deforestation via fines, bans, or designating areas as ‘protected’ is challenging
due to leakage that displaces deforestation towards unregulated areas. Regulators find
it difficult to enforce fines or bans, especially in developing countries (Balboni et al.,
2021; Burgess et al., 2012, 2019; Harding et al., 2021; Harstad and Mideksa, 2017; Gon-
zalez Lira and Mobarak, 2019), though protected conservation areas can be effective in
some cases (Oldekop et al., 2019; Assunção et al., 2023). Against that backdrop, we find
that a seemingly-unrelated policy of extending electrification to rural areas changes
farmers’ economic incentives in ways that inadvertently protect the forest without any
monitoring or policing requirement. The magnitude of the effect on forest cover ap-
pears to be as large as the documented effect of the most prominent package of direct
conservation policies ever implemented in the Amazon called PPCDAM (Assunção
et al., 2015). This suggests that conservation policies should maintain a large focus on
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Figure 1: Cereal Yields and Land under Cereal Production: 1961–2014

Notes: In the figure, each data point is one region-year, starting in 1961 (the left-most points) and ending
in 2014 (the top-most points). In South Asia, most of the increase in production came from rising yields,
with little addition of new agricultural land. In Sub-Saharan Africa, agricultural land increased more
than yields. Latin American followed the Sub-Saharan path until the 1980s and then shifted towards
the Asian model of agricultural growth. The figure reflects the Green Revolutions in Asia and Latin
America and suggests that, at a continental scale, Borlaug’s hypothesis holds true. Original data source
is the Food and Agriculture Organization (FAO). Data was downloaded from the World Bank’s World
Development Indicators.

the economic interests of user groups. Policies such as direct payments for ecosystem
services (Porras et al., 2012; Jayachandran et al., 2017; Jayachandran, 2013), policies
that encourage substitution of land use away from cattle grazing (Araujo et al., 2020),
or interventions that improve farm productivity fall in this camp.

We also contribute to the literature on the effects of electrification. Lewis and Severnini
(2020), Chakravorty et al. (2016), and Dinkelman (2011) document economic benefits
of rural electrification in the U.S., the Philippines and South Africa. Lee et al. (2020c)
and Burlig and Preonas (2016) find no significant economic gains from household elec-
trification. As Lee et al. (2020b) discuss, the main difference between these studies
and our approach is that we study the impact of new electricity infrastructure at an
aggregate level, which benefits not only households but also firms, farms, and entire
communities. Another important difference is the target population and time frame—
while Lee et al. (2020c) focuses on immediate impacts of electrification on poor rural
households, we study changes in land use over a 50-year horizon. A third difference is
that, as electricity rolled out, ready-to-implement technologies and processes useful for
farming that rely on electricity (like irrigation, drying, storage, and processing) were
already available (Fluck, 1992). Our setting shares the spirit of that of Usmani and Fet-
ter (2020), who show that rural electrification produces significant economic effects in
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India only when preexisting economic opportunities are in place.

2 Context: Agriculture in Brazil

In this section, we provide stylized facts about land use and agriculture during our
sample period. These stylized facts motivate the conceptual framework presented in
section 4, which guides our empirical analysis.

Land Use Table 1 provides an overview of farmland and land-use within farms dur-
ing our study period. According to the Census of Agriculture, farms occupied 35 to
44 percent of the country’s territory between 1970 and 2006. Within farms, the land is
divided into pastures (mostly for cattle), cropland, and native vegetation. These three
land-use categories account for over 80 percent of farmland. “Native vegetation” is the
Census of Agriculture’s land use categorization for vegetation that has not been culti-
vated. This category refers to “forests” in most of Brazil, but savannas and steppes are
native to some areas.2 The share of farmland dedicated to pastures declined between
1970 and 2006, while the shares of cropland and native vegetation increased. Farm-
ers keep native vegetation on their properties not only to extract forestry income, but
also because frictions in labor, credit, or rental markets may make some of the land
unprofitable to cultivate.

Table 1: Land Use in Brazil: 1970–2006

Shares of Land Use within Farmland

Farmland
Country Area

Pastures Cropland Native
Vegetation

Other

Year
(1) (2) (3) (4) (5)

1970 0.35 0.52 0.11 0.19 0.18
1985 0.44 0.48 0.14 0.22 0.16
2006 0.39 0.48 0.16 0.29 0.08

Source: Brazilian Census of Agriculture. The table shows country-wide figures published by IBGE between 1970 and 2006. Col-
umn 1 shows the total land in farms (farmland) divided by the country area. Column 2 shows pastureland divided by farmland.
Column 3 shows cropland used for annual crops, including fallowing, divided by farmland. Column 4 shows the area under na-
tive vegetation (matas naturais) divided by farmland. Column 5 shows the share of land in all other uses, which include perennial
crops; planted forests; farmsteads, buildings, livestock facilities, ponds, roads, and wasteland; and other non-cultivated land.

Crop Cultivation and Cattle Grazing Cattle grazing is a relatively land-intensive ac-
tivity in Brazil, while crop cultivation is more intensive in physical and human capital.
To illustrate, table 2 shows measures of capital-to-land and labor-to-land ratios in crop

2The presence of trees within farms is a common feature in the tropics. For example, Zomer et al. (2014)
finds that 50 percent of agricultural land in Central America had at least 30 percent of tree cover in year
2000.

6



and livestock farms. For example, in 2006, the value of machinery per hectare in the
typical livestock farm was one-fifth of that of a typical crop farm. Furthermore, crop
farms had three times as many workers per hectare as livestock farms. These figures
reflect the fact that only 4 percent of cattle farms use confinement, whereas over 60
percent of the harvested area of maize is mechanized, as is virtually all of the country’s
soybean production (IBGE, 2006). In short, cattle grazing requires low levels of capital
when compared to crop farming.

Table 2: Labor and Capital intensivity in Crop and Livestock Farms: 1970–2006

Workers Per 1,000 Hectares Value of Machinery, Equipments, and
Vehicles Per Hectare

Crop farms Livestock farms Crop farms Livestock farms
Year

(1) (2) (3) (4)

1970 125 19 59 17
1985 120 31 415 118
2006 92 31 550 114

Source: Brazilian Census of Agriculture. The table shows country-wide figures published by IBGE between 1970 and 2006.

Credit and Labor Market Constraints Like many rural economies in the developing
world, farmers in Brazil face labor and capital constraints, and access to credit is far
from universal (Conning and Udry, 2007). Between 1970 and 2006, at least 80 percent
of Brazilian farmers had no access to external financing, and access to other financial
products such as insurance was even less common (IBGE, 2006). Agricultural labor
markets in developing economies are also plagued by search and informational fric-
tions (Fink et al., 2020; Jeong, 2020), on top of the notoriously stringent employment
regulations in Brazil that make hiring and firing very costly (Ulyssea, 2010).

3 Electricity and Agriculture

Rural Electrification in Brazil The electricity grid expanded massively during the
second half of the twentieth century in Brazil, particularly into rural areas. While 75
percent of urban households had access to electricity in 1970, only 4 percent of farms
were electrified. By 1995, the proportion of farms with access to the grid increased ten-
fold. Hydropower, which requires intercepting large amounts of water at high velocity,
supported virtually all of this expansion.

Electricity and Crop Production Electricity is valuable for agricultural production,
as it enables farmers to use techniques and equipment that would otherwise be more
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costly or infeasible to implement (Fluck, 1992; Pimentel, 2009). Post-harvest storage
and processing of grains requires humidity control and machinery for drying grains,
including ventilators, which are cheaper to operate when electricity is available. Lewis
and Severnini (2020) analyze data from a rural electrification experiment in the 1920s
in the US where farm machines, excluding water pumping devices, consumed 30 per-
cent of the electricity provided to farms, with consumption peaking during the harvest
season. Furthermore, electricity provides energy that is necessary to pump and dis-
tribute groundwater for irrigation. During the Green Revolution, electricity permitted
widespread irrigation and enabled Indian farmers to fully realize the productivity ben-
efits of new seed varieties (Rud, 2012).3

Electricity and Livestock Production Livestock production can also benefit from elec-
tricity in theory, depending on the specific products the sector focuses on. Mechanized
milking, pasteurizing, and cooling of dairy products are energy-intensive processes
(Lewis and Severnini, 2020).4 However, 85 percent of the Brazilian cattle herd is for
beef production, and only one-fifth of the milk-producing farmers pasteurize their
milk, which is typically done in facilities outside the farm-gate (IBGE, 2006). Given
the nature of farming in Brazil, electricity has been far more important for crop pro-
duction than for cattle grazing. This will drive an important assumption in our model,
and we will later verify in the data that electricity was indeed more beneficial for crop
production than for cattle.

Indirect effects of Electricity on Agricultural Production Electrification can affect
farm production through other less direct channels. For example, electricity can be
labor-saving in rural areas (Dinkelman, 2011). Since crop cultivation in Brazil is more
labor-intensive than cattle grazing, this channel would presumably also benefit crop
production more than livestock production, in line with our argument. Furthermore,
large-scale electrification may support the supply of services available to farmers, such
as banking, telecommunications, private sector supply chains, and extension services.
Rural electrification increases human capital accumulation (Lipscomb et al., 2013), and
rural amenities, which can attract more skilled people to rural areas. All of this can im-
prove farm productivity, and again may have differential impacts on crop production
and animal husbandry.

3While diesel pumps are an alternative, diesel was especially expensive during oil price shocks in the
1970s (World Bank, 1990; Rud, 2012).

4Industrial poultry farming is also energy-intensive, and benefits from electrification (Lewis and Sev-
ernini, 2020). However, poultry requires very little land and plays a minor role for the land use and
deforestation decisions we study in this paper. For this reason, we use the terms “livestock production”
and “cattle grazing” interchangeably in this paper.
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4 Conceptual Framework

In this section we build a simple, partial-equilibrium theoretical framework inspired
by the salient features of farming in Brazil, with the goal of generating predictions on
how a positive productivity shock to crop cultivation will affect farming choices and
deforestation. To mirror the language in our empirical exercise, we refer to the key
productivity parameter in our model as “availability of electricity” and denote it by Ω.

Set up The economy is endowed with total land of H which is initially covered by
native vegetation. A continuum of individuals reside in this economy, and each de-
cides whether to become a farmer. These individuals differ in their opportunity cost
of operating a farm, θ ∼ Γ, which can be thought of as the wage rate in the non-farm
sector. The availability of electricity can affect farmers’ outside options, and so we as-
sume that Ω shifts Γ in the sense of first-order stochastic dominance; the direction of
this shift depends on how electrification affects returns to farming relative to non-farm
activities.5 The equilibrium profit from farming, Π∗, is common across farmers; the
mass of farmers is therefore Γ(θ), where θ = {θ : θ ≤ Π∗}.

Each farm is a tract of land of size H, which is fully covered by native vegetation before
farming activities commence. Each farmer can engage in both crop cultivation and cat-
tle grazing, allocating Hc and Hg units of land to crops and pasture, respectively, with
land that is not used for either remaining as forestland. The production functions for
the two activities are similar, except that crop cultivation requires an additional factor,
denoted by K. We think of K as capital, labor, or a combination of both. We make
two simplifying assumptions. First, we assume that electrification improves the pro-
ductivity of crop cultivation, but not cattle grazing. Second, we assume that only crop
cultivation requires K. Specifically, we assume the following forms for the production
functions for crops and cattle grazing: C = ΩKF(Hc) and G = F(Hg), with FH > 0,
FHH < 0 and FH(0) = ∞.6

Land and capital can be bought at prices p and r, respectively. Farmers are credit
constrained and need to fund their expenditures on capital such as tractors or irrigation
equipment and land from their own resources, M. We normalize the prices of C and G

5Formally, an increase in electrification can cause the distribution of opportunity costs to dominate or be
dominated by the original distribution. If electrification improves farmers’ outside options more (less)
than it improves the returns to farming, then Γ(θ; Ω̂) ≤ (≥)Γ(θ; Ω̃), for all Ω̂ > Ω̃.

6The model’s substantive implications require only that crop cultivation is more capital-intensive, and
benefits relatively more from electrification, and both these assumptions are supported by the data.
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to 1.7 Thus, the farmer’s problem can be written as:

max
K,Hc,Hg

ΩKF(Hc) + F(Hg)− rK− p(Hc + Hg) (1a)

subject to rK + p(Hc + Hg) ≤ M, (1b)

Hc + Hg ≤ H. (1c)

Predictions Since the profit function is linear in K and FH(0) = ∞, the resource con-
straint (1b) always binds. This is merely a modeling device, and what is essential in
this model is that farmers are constrained in their ability to hire K. Land will therefore
not be the limiting factor, and the land constraint (1c) will not bind. The solution to this
problem yields optimal land use and production choices with the following properties:

∂K∗

∂Ω
> 0 (2a)

∂H∗c
∂Ω

> 0 (2b)

∂H∗g
∂Ω

< 0 (2c)

∂(H∗c + H∗g)
∂Ω

< 0 (2d)

The intuition behind equations (2a)–(2d) is straightforward. Since capital and land al-
located to crops become more productive with electrification, K and Hc move in the
same direction as Ω, as shown in equations (2a) and (2b). However, since the credit
constraint binds, the farmer can only increase land allocated to crop cultivation and
hire more K if she decreases land allocated to cattle grazing (equation 2c). The total
demand for agricultural land within the farm, H∗c + H∗g , decreases in response to in-
creases in electrification (equation 2d): as farmers substitute cropland for pastureland,
they also spend more on K and hence must give up more of Hg than they can increase
Hc.8

The net effect of electrification on deforestation depends not only on intensive-margin
changes in land demand within each farm, but also on how the productivity shock
induces extensive-margin changes in the decision to enter the agricultural sector. To
analyze this net effect, we define the total area of native vegetation, Hv, as the differ-
ence between the economy’s total land endowment and the farmer’s total land demand

7To the extent that commodity prices are exogenous to local conditions, this normalization is innocuous.
In any case, making prices endogenous to the (local) productivity shock would not add predictive
power to this framework.

8In reality, the price of cropland is typically higher than the price of pastureland, which would make the
negative effect on H even stronger. That would strengthen our prediction, but our model ignores that
margin. In the same vein, we assume that electrification does not increase input prices. If electrification
increases relative price p/r, farmers would adjust by spending more in K and less in Hc + Hg.
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for agricultural purposes:

Hv = H −
∫ θ

−∞
(H∗c + H∗g)dΓ(θ) (3)

The derivative of the total area of native vegetation with respect to electrification has
two components:

dHv

dΩ
= −

d(H∗c + H∗g)
dΩ

Γ(θ)︸ ︷︷ ︸
>0

− (H∗c + H∗g)Γ(θ)
dθ

dΩ︸ ︷︷ ︸
≶0

(4)

The first term relates to the intensive-margin adjustment, through which electrifica-
tion reduces the demand for agricultural land within farms. The second term is the
extensive-margin effect: electrification changes θ—the threshold in the distribution
of farming opportunity costs below which individuals decide to farm. Whether this
threshold increases or decreases with electrification depends on the changes in the re-
turns to farming relative to returns in the non-farm sector.

The net effect on the forest is therefore theoretically ambiguous. We will examine each
of the two (intensive and extensive margin) effects separately in the data, and then
combine them quantitatively to infer the total effect of a productivity shock on defor-
estation.

To summarize, this model makes a few assumptions about the agricultural production
function that we can examine in the data, and yields a few further testable predictions.
First, we make the testable assumption that electrification increases crop cultivation
productivity more than cattle grazing productivity. Second, we assume that farmers
face constraints in factor markets. Beyond the support for this assumption that we
have already provided in section 3, we will formally test its implications using varia-
tion in rainfall and credit access. Third, the model predicts that electrification should
lead to greater investments in capital, specifically in capital that is useful for crop farm-
ing. Fourth, the model predicts that positive productive shocks induce farmers to shift
land use from cattle grazing to crop cultivation. Finally, the model highlights that elec-
trification has intensive- and extensive margin effects on the demand for agricultural
land. On the intensive margin, it reduces demand for agricultural land through reduc-
tions in land demand for cattle grazing. Increases in land demand for crop cultivation
are not enough to offset the reduction in land demand for cattle grazing. The effects
on the extensive margin are ambiguous. Demand for farmland may or may not in-
crease depending on the relative magnitude of farms’ profits vis-à-vis farmers’ outside
options.
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5 Data Sources and Variable Definitions

We build a decennial panel dataset of Brazilian counties from 1960 to 2000 that com-
bines data from three main sources. First, we use historical measures of electricity
infrastructure and the evolution of the grid by decade compiled by Lipscomb et al.
(2013), who also provide the basis of our instrument for the growth of electrification in
Brazil (further described in section 6). Second, we use five waves of the Brazilian Cen-
suses of Agriculture to track farmland expansion, land use within farms, agricultural
output, and inputs. Finally, we use data derived from satellite imagery, which has the
advantage of measuring land use for the entire county, although it cannot distinguish
between land use within and outside of farms.

The number of counties (or municípios) in Brazil increased from 2,766 to 5,564 during
our study period due to redistricting. The concordances provided by Reis et al. (2011)
and Ehrl (2017) enables us to construct a balanced panel of minimum comparable areas
that remain constant over this period. After merging data from all sources, our panel
contains 2,172 “standardized counties”. Table 3 presents summary statistics for the
data we use. We now describe these data.

Electricity Infrastructure Lipscomb et al. (2013) compile digital maps of the electric-
ity grid in Brazil for the period 1960-2000 based on archival research that identifies the
locations and construction dates of hydro-power plants, transmission lines, and sub-
stations.9 The authors obtained reports, inventories, and maps from major regional
electricity companies in Brazil operating during that period, and consolidated that in-
formation into the status of the electricity grid in each decade. Following Lipscomb
et al. (2013), we divide Brazil into 32,578 evenly spaced grid points; in counties with a
power plant or substation, we assume that all grid points within a 50-kilometer radius
of the county’s centroid have access to electricity.10 Our county-level electricity access
variable is defined as the county’s proportion of grid points that are electrified.

Agricultural Data The Brazilian Census of Agriculture is a comprehensive source of
data on the universe of farms in the country.11 We use county-level aggregations from

9Transmission lines transport electricity from power plants to substations in regions where the electricity
will be used. Substations reduce voltage, making the electricity suitable for the distribution lines that
ultimately supply electricity to firms, farms, and households.

10We proceed in this way because the authors compiled historical data on generation plants and trans-
mission stations, and it was not feasible to collect direct data on the many distribution companies op-
erating during the period. Distribution networks stretch one-hundred kilometers on average, which
is why we choose the 50-km radius.

11The Census of Agriculture surveys all rural establishments in the country. The definition of a rural es-
tablishment is similar to what would be commonly thought of as a farm: a continuous plot of land un-
der a single operator, with some rural economic activity – crop, vegetable or flower farming, orchards,
animal grazing or forestry. There are no restrictions on the plot size, tenure, or market participation.
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the following five waves of the Census of Agriculture: 1970, 1975, 1985, 1996, and 2006.
These waves match agricultural outcomes to the electricity infrastructure data with a
five-year lag. We use the census data to investigate the effects of electrification on three
sets of outcomes: agricultural output, land use, and capital use.

When looking at agricultural output, we measure crop yields by dividing total grain
production by harvested area of all major grains: maize, cotton, soybeans, beans, rice,
and wheat. For cattle grazing, we use the stocking ratio, i.e., heads of cattle divided by
hectares of pastureland. We measure changes in the composition of farm production
using the cattle share of farm production value, which captures the relative variation
in physical output and prices.

To examine the effects on land use, we start by using the proportion of county area
in farms (farmland). We then examine the within-farmland shares of three land-use
categories—cropland, pastures, and native vegetation12. Cropland is the harvested area of
all major grains: maize, cotton, soybeans, beans, rice, and wheat, which on average
corresponds to 87 percent of the harvested area of all annual crops during our sample
period.

Finally, to test our model’s prediction that electrification increases investment in crop-
related capital, we use the per-hectare number of tractors, planting and harvesting
machines, plows, and grain storage facilities as measures of farm capital stock. We
also use the proportion of farms that use irrigation.

Satellite Data We complement our analysis using satellite-based classification of land
use. Specifically, we use data from collection 3 of the Brazilian Annual Land Use and
Land Cover Mapping Project (MapBiomas), which provides land-use classifications
based on annual composites of LANDSAT images from 1985 to 2017. MapBiomas clas-
sifies each 30m x 30m pixel into 20 land use categories using algorithms specific to each
of the six Brazilian biomes.13 We downloaded per-county aggregations with total area
in each land use category for 1985, 1995, and 2005, to match the years in the Census of
Agriculture data. We then aggregate the 20 land-use categories in the satellite data into
four classes that match well with the agricultural census data: natural vegetation, pas-
tures, cropland, and others. Finally, we match these data to the electricity infrastructure
data with a 25-year lag, on average. The main advantage of satellite measurements is
that they contain information on land use in the whole county, not only within farms.

12The remaining farm area includes orchards, annual crops other than grains, planted forests, buildings
and facilities, water bodies and non-arable land. The area in planted forests is small, and bundling it
with native vegetation makes no quantitative difference in our results.

13To our knowledge, MapBiomas is the only satellite data product with land use classification for the en-
tire Brazilian territory and this time period. The data and classification methods are publicly available
at mapbiomas.org/en.
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Table 3: Sample Descriptive Statistics

Mean Std. Dev. Min Max

Electricity
Electricity Infrastructure 0.75 0.40 0.00 1.00
Modeled electricity instrument 0.74 0.43 0.00 1.00
Percent of Farms Electrified 0.33 0.35 0.00 2.05

Land Use
Farmland/County Area 0.71 0.27 0.00 6.26
Pastures/Farmland 0.47 0.24 0.00 0.95
Cropland/Farmlanda 0.11 0.15 0.00 3.14
Native Vegetation/Farmland 0.18 0.15 0.00 0.99

Capital usage
Percentage of Farms with Irrigation 6.16 10.94 0.00 93.28
Grain Storage Facilitiesa 27.34 85.90 0.00 3,263.17
Planting and Harvesting Machinesa 10.11 23.69 0.00 669.86
Plowsa 20.46 38.35 0.00 587.97
Tractorsa 22.94 38.50 0.00 868.05

Agricultural output
Grain Yields (log)a 0.07 0.79 -2.77 3.01
Heads of Cattle Per Hectare 1.07 0.76 0.12 13.24
Share of Cattle Production Value 0.29 0.22 0.00 0.99

Land Use - Satellite Data
Pastures/County Area 0.48 0.28 0.00 1.00
Cropland/County Area 0.09 0.17 0.00 0.91
Native Vegetation/County Area 0.36 0.27 0.00 1.00

Other
Bank Branchesa 0.64 3.10 0.00 112.1

Number of Counties 2,172
Number of observations 10,860

Notes: The data is a decennial panel of standardized counties from 1960 to 2000. a Per 10,000 hectares of county
area. See Appendix B for more detailed descriptions of variable definitions and sources.
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6 Empirical Strategy

We estimate the effect of electrification on land-use decisions using a decennial panel
of counties. Assuming a linear and additive structure, we are interested in producing
an unbiased estimate of θ in an equation of the following form:

Yc,t+1 = αc + γt + ρEct + υct, (5)

where Yc,t+1 is the outcome of interest (e.g., land use) in county c at time t + 1, αc

is a county fixed effect, γt is a time fixed effect, and Ect is our measure of electricity
infrastructure—the proportion of grid points in county c that are electrified at time t.

Estimating (5) by OLS is likely to produce biased estimates of ρ because the placement
of electricity infrastructure is not random. For example, infrastructure may expand to
areas where the demand and economic returns are high, or may be allocated by the
government to under-served areas. Since these factors are unobserved to us, they will
be in υct, and may affect the demand for agricultural land. The correlation between Ect

and υct could create a bias in the OLS estimator in either direction.

The Instrument To overcome these identification concerns, we use an instrumental
variable (IV) approach. We instrument Ect with the output of an electricity infras-
tructure expansion model that is based only on engineering cost considerations. Our
approach, originally developed in Lipscomb et al. (2013), takes advantage of two facts.
First, hydropower accounts for the majority of electricity generation in Brazil. The cost
to build a hydropower plant is largely determined by geography. Hydropower plants
require a steep river gradient and a large amount of water flow to create pressure from
the water descending through the turbines. Although creating these conditions artifi-
cially is possible through large investments, naturally steep areas with high water flow
have a clear cost-advantage. Second, the expansion of the electrical grid in Brazil was
led by the federal government. We are thus able to identify the budget for electricity
generation in each decade that determined the expansion. We use this information
on the country-wide scale of expansion to introduce panel variation in the instrument,
similar to the approach in Duflo and Pande (2007). Our basic strategy is to forecast how
the grid would have evolved decade-by-decade, if it expanded from low to high-cost
locations.

To construct our instrument—predicted electricity availability—we mimic the (coun-
terfactual) decision-making of a planner who focuses only on engineering costs (and
ignores demand) to determine the expansion of the electricity network. Using a spatial
grid of 32,578 evenly spaced points, we build a model that predicts electricity avail-
ability at each grid point-decade, and we then aggregate it to the county-decade level.
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The model works in three steps.

The first step provides a ranking of the cross-section of grid points based on their suit-
ability for a hydropower plant. To do that, we create a hydropower suitability index
for every grid point based on topographic factors (water flow accumulation and river
gradient) and the presence of dense forests, which are also known to considerably in-
crease construction costs. The suitability index is the predicted probability of the point
receiving a hydropower plant from a probit regression in which the dependent vari-
able indicates whether the location has a dam built as of the year 2000 (the end of our
sample period). Appendix table B.1 shows the result of this probit regression.

The second step determines which point-decades are allocated a hydropower plant by
the hypothetical planner seeking to minimize cost. For example, we know that the
first decade’s budget allowed for the construction of 53 new plants. Therefore, the 53
lowest-cost locations are allocated generation plants in the first decade in the instru-
ment we construct. The second decade’s budget allowed for the construction of 36
new plants, which means that the next 36 lowest-cost locations would receive a gener-
ation plant, and so on for every subsequent decade. In the third and final step, we use
simulated grid annealing to optimize the lowest cost placement of two transmission
substations per generation plant and assume that all grid points within 50 kilometers
of a predicted plant or substations are electrified imposing the constraint that areas
already electrified don’t need additional infrastructure. The simulation leaves some
variation in the predicted grid in each decade, so we deviate slightly from Lipscomb
et al. (2013) in that we average the predicted network across 500 runs of the Matlab
code in order to improve the signal to noise ratio. The steps for estimation of the in-
strument are explained in greater detail in Lipscomb et al. (2013).

Estimation Our instrument is the fraction of grid points in each county-decade pre-
dicted to be electrified by this model; it is designed to capture how the grid would
have evolved over decades had investment decisions been made solely on the basis of
geography-driven construction cost considerations. Denoting the instrument by Zct,
we estimate the following system of equations by two-stage least squares:

Ect = α1
c + γ1

t + δZc,t + θ1Xc,t + ηc,t (6)

Yc,t+1 = α2
c + γ2

t + βÊc,t + θ2Xc,t + εc,t , (7)

where Êc,t are the fitted values from the first stage regression (6). Note that both Zc,t

and Ec,t are county-level averages of grid point values. We therefore weight regressions
by the county’s number of grid points. We cluster standard errors by county. In our
preferred specification, we include interactions between the hydropower suitability
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index and time fixed effects in both estimating equations, which flexibly control for
geography-specific trends. As we discuss below, these controls help to reinforce the
credibility of our exclusion restriction.14

Identification Our identification is based on the hypothetical grid’s expansion to less
attractive, higher cost locations for hydropower over time. Because we have time vari-
ation in (actual and modelled) electrification within counties, we can include county
fixed-effects in our IV estimation. This means that time-invariant geographic character-
istics, such as elevation, slope, and water availability, do not contribute to identifying
the (local average) treatment effects that we estimate. This is important because a key
threat to identification would otherwise be that geographic factors like elevation and
water flow directly affect agriculture.

In our fixed-effects framework, the exclusion restriction concerns the decade-by-decade
process of evolution of our hypothetical electricity grid, which produces discontinuous
jumps in the probability of early-versus-late electrification in certain locations. The 53
lowest-cost locations are electrified in the first decade, but locations with topographic
factors that barely miss the cut (that rank 54, 55, 56, etc, in the first step of instrument
construction) have to wait for the next decade to receive power. Location fixed-effects
and trends specific to the suitability ranking15 absorb much of the geographic variation
in the instrument, thereby isolating these discontinuities in our cost-based forecast for
a county to be electrified as the key source of identification. Our argument is that these
discontinuous jumps in receiving power early-versus-late are unlikely to be directly
related to the continuous evolution of farmland expansion, pasture-to-cropland con-
version, and deforestation, and should not violate the exclusion restriction in our IV
strategy.

Moreover, our model of grid expansion predicts that electrification evolves from areas
with high slopes and water volume to areas with low slopes and no water. Historically,
the expansion of agricultural land and population tracks water availability. However,
agricultural land and population also evolve from areas with low slopes to areas with
higher slopes. The interplay of these two geographic factors in opposite directions im-
plies that the dynamics of our instrument should not be collinear with the dynamics of
agriculture and population movements, which strengthens the confidence in our exclu-

14Our panel data contains five distinct time periods. We use the subscripts Yc,t+1 and Ect in equation
(7) to denote the fact that outcome variables Y collected from various waves of the agricultural census
are matched to the electricity infrastructure data that is typically lagged about 5 years. For example,
in the first period defined in our dataset, the 1970 agricultural census is matched to the electricity grid
for the 1960s reported in Lipscomb et al. (2013), while the last period is the 2006 census matched to the
electricity grid in the early 2000s.

15We flexibly control for a polynomial in the suitability index interacted with time-fixed effects in our
preferred specification, to alleviate concerns about spurious common trends between our predicted
grid expansion instrument and spatial patterns of agricultural expansion and deforestation.
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sion restriction. The fact that our instrument is not collinear with population dynamics
also alleviates concerns that it predicts the expansion of other types of infrastructure
such as sanitation or roads. That said, road-building and electric-grid development
often go hand-in-hand. However, even if our instrument predicts that broader set
of infrastructure, we are only interested in using that as an agricultural productivity
shock to explore subsequent changes in land use. Whether the productivity shock
comes from rural electrification alone, or a combination of electricity and roads, is not
a first-order concern for this paper. It could change the precise policy implication for
governments interested in conserving forests (“improve agricultural productivity” as
opposed to “invest in electrification”); these are important subtleties in interpretation.

A weakness of our IV approach, as we detail in appendix D.2, is that our instrument
becomes weak (F-Stat of 7.3-8.1 depending on the specification) in the first stage if we
directly control for trends specific to each component of the geographic factors used
in the instrument: water flow, river gradient and the Amazon.16 To avoid the weak
instrument problem, we instead control for trends specific to the hydropower suitabil-
ity index, which combines those three inputs into a single index. Appendix D.2 shows
that inclusion of the Amazon-specific time trends is the main culprit that makes our
first-stage weak, so that appendix also explores the sensitivity to removing the Ama-
zon region entirely from the analysis. The Amazon region accounts for 59% of the land
area of Brazil, and therefore 59% of the grid points used for instrument construction
fall within the Amazon. Our IV approach breaks down when excluding these 59% of
the effective (weighted) sample because the instrument becomes too weak. However,
we retain adequate first-stage power at conventional levels (F-stat of 16.9-26.8) when
excluding up to two-thirds of the Amazon territory. Specifically, we divide Amazonian
counties into three groups with approximately equal area – counties either belong to
the state of Pará, Amazonas state, or other states. Excluding any two of these groups
at a time keeps the second-stage results largely unchanged, and the main conclusions
of our paper are retained.

Instrument Validity Tests We perform two additional exercises to explore the valid-
ity of our empirical strategy. First, we check whether the spatial dynamics of farm
production follows the same pattern as our forecast of electricity grid expansion. To
do that, we compute correlations between the rank order of a county’s hydropower
suitability and the rank order for two indicators—farm production value per hectare
and the county’s share of farmland—within regions of Brazil and within years.17 This
is a stringent test of our identification assumptions because in our analysis we use

16This issue is further detailed in an online-only note (Lipscomb et al., 2021).
17Lipscomb et al. (2013) perform a similar exercise and find low correlations between the suitability

index and population density and GDP.
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Table 4: Spearman Correlations: Hydropower Suitability and Agriculture

Year

Region 1960s 1970s 1980s 1990s 2000s

Panel A: Hydropower Suitability and Farm Production Value Per Hectare

North −0.185 −0.176 −0.171 −0.209 −0.134
North East −0.129 −0.106 −0.028 −0.059 −0.011
South East −0.026 −0.021 −0.040 −0.057 −0.067
South 0.071 0.041 0.055 0.058 0.056
Center West 0.384 0.543 0.536 0.445 0.106

Panel B: Hydropower Suitability and Share of Farmland

North 0.177 0.185 0.184 0.197 0.191
North East 0.119 0.094 0.070 0.116 0.081
South East 0.013 0.015 0.001 −0.015 −0.022
South 0.061 0.066 0.056 0.065 0.053
Center West 0.479 0.529 0.539 0.455 0.439

Notes: Each cell presents a Spearman rank order correlation, by region and decade. In Panel A, the correlation is computed be-
tween the suitability rank for hydropower generation and the rank for the farm production value per hectare. In Panel B, the
correlation is computed between the suitability rank for hydropower generation and farmland share of the county area.

county fixed-effects, and not region fixed-effects. Table 4 shows the results. For most
regions and decades, these correlations range from 0.01 to 0.21 in absolute value. The
exceptions are in the Center-West region, where the magnitudes hover between 0.10
and 0.54. This can be a source of concern, and in appendix D.3, we show that the
main results of our paper do not change if we exclude the center-west region from the
analysis.

Second, we check whether placement of power plants and transmission lines simulated
by the forecasting model can be predicted by farm production indicators in earlier
years by estimating equations of the form instrumentit = βoutcomei,t−1 + λt + θi + ξit..
Under the null that our instrument is as good as random the estimates of β should
be statistically equal to zero. Results are shown in Appendix Table C.1. Almost all
coefficients are small in magnitude, suggesting that pre-existing production factors are
not a major factor in determining electricity placement.

7 Empirical Results

7.1 First-stage results and Electricity Adoption by Farms

Table 5 shows whether our instrument — the hypothetical grid expansion based on
cost considerations — predicts the actual evolution of Brazil’s electricity grid. The
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specification in column 1, which uses county as well as time fixed effects, confirms a
strong and significant correlation between modeled electrification and actual electricity
infrastructure. If our model predicts that a county should get electrified in a certain
decade, the likelihood of that county actually receiving electrification increases by 46
percentage points. Column 2 adds flexible controls for geographic-specific trends by
including a quartic polynomial of the hydroelectric suitability index interacted with
time fixed-effects. The point estimate decreases from 0.46 to 0.39, and the partial F-
statistic decreases from 67.0 to 36.3. We use this more conservative specification from
column 2 in the remaining results reported in this paper.18

While these F-statistics are above the thresholds traditionally used as a rule of thumb
as suggested by Staiger and Stock (1997), recent work by Lee et al. (2020a) shows that
conventional clustered standard errors may be biased downward when the F-statistic
is below 104.7. With an F-statistic of 36.3, the tF critical value is 2.247 (Lee et al., 2020a,
Table 3), which implies that the 95% tF-corrected confidence intervals are 15 percent
wider than conventional confidence intervals. In appendix table D.1, we reproduce all
second-stage results along with the tF-corrected 95% CIs suggested in Lee et al. (2020a).
Note that Lee et al. (2023) points out that these intervals are in most cases overly con-
servative. Only one coefficient (investment in planting and harvesting machines) has
tf-corrected confidence intervals that include zero when conventional confidence in-
tervals do not.

Column 3 explores whether the instrument predicts electrification of farms, based on
questions directly asked to farm operators in the agricultural census. Our instrument
not only predicts the arrival of grid infrastructure, but also adoption of electricity by
farms (column 3) controlling for county, year, and the quartic suitability rank interacted
with decade fixed effects. Column 4 shows that the arrival of the infrastructure grid
increases the proportion of farms electrified by 13.7 percentage points (pp). We use
this to calibrate the effects throughout the paper–we highlight changes in productivity
and deforestation as a result of a 10 pp increase in electrification, to keep the arithmetic
simple and benchmark the magnitudes to something like an intent-to-treat effect of
electrification policy.

7.2 Does electrification affect agricultural productivity?

We now test the central assumption of our theoretical framework, namely that elec-
tricity improves agricultural productivity, and that the productivity shock is biased
18Note that the instrument is an estimated prediction based on simulated grid annealling. As a result,

there are small fluctuations in the instrument based on the seed. We simulate the grid 500 times and
average the grid point predictions before aggregating to the county (amc60) level. This improves on
the strategy used in (Lipscomb et al., 2013) by providing more stable estimates and by improving the
signal to noise ratio.
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Table 5: First-Stage Results

Dependent Variable Electricity
Infrastructure

Proportion of
Farms with
Electricity

(1) (2) (3) (4)

Instrument 0.456∗∗∗ 0.385∗∗∗ 0.278∗∗∗

[0.056] [0.064] [0.049]

Electricity Infrastructure 0.137∗∗∗

[0.022]

Year dummies Yes Yes Yes Yes

Quartic suitability rank × year dummies No Yes No Yes

Observations 10,860 10,860 10,860 10,860
Number of Counties 2,172 2,172 2,172 2,172
Mean of Outcome 0.750 0.334 0.334
Partial F-stat 67.0 36.3

Notes: In columns 1 and 2 the dependent variable is the prevalence of electricity infrastructure in the county measured from in-
frastructure inventories. Adding a quartic polynomial of the suitability index interacted with year dummies does not change the
coefficient substantially. We keep the specification in column 2 as our preferred specification throughout the paper. In columns 3
and 4, the dependent variable is the fraction of farms with electricity in the county, measured from the Censuses of Agriculture.
These columns show that both the instrument and our measure of electricity infrastructure correlate with a measure of rural elec-
trification contained in our main dataset. All specifications include county fixed effects and are weighted by the number of grid
points contained in the county. Standard errors clustered at the county level in brackets. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 6: The Effects of Electricity on Agricultural Production

(1) (2) (3)
Dependent Variable Grain Yields (log) Heads of Cattle Per

Hectare of Pastureland
Cattle Production

Value/Total Production
Value

IV 0.948∗∗∗ −0.399 −0.242∗∗∗

[0.231] [0.261] [0.085]

OLS 0.109∗∗∗ −0.011 0.027∗

[0.040] [0.067] [0.015]

Observations 10,700 10,648 10,860
Mean dep. var. 0.07 1.07 0.29

Notes: This table shows that electricity infrastructure is a positive productivity shock to crop cultivation (column 1) but not to
cattle grazing (column 2). A corollary is that farm production shifts away from cattle grazing hough not statistically significantly
so (column 3). The dependent variable in column 1 is the log of grain yields (production, in thousands of tons, divided by grain
harvested area in the county). Grains include maize, soybeans, cotton, wheat, beans, and rice. The dependent variable in column
2 is the number of cattle heads per hectare of pastureland in the county. The dependent variable in column 3 is the ratio of cattle
production value to total farm production value. All regressions are weighted by the number of grid points in the county, and in-
clude county fixed effects and interactions between time fixed effects and a quartic polynomial on the suitability index. Standard
errors clustered at the county level in brackets.

towards crop farming rather than livestock-rearing. We use our IV strategy to estimate
the effects of electricity on measures of crop and cattle production. Table 6 shows the
results. Column 1 shows that electricity increases crop yields: the IV estimate implies
that a 10 percentage point increase in electricity infrastructure increases yields by 9.5
percent (p-value < 0.01). In contrast, column 2 shows that the cattle stock density does
not increase with electricity—both the OLS and IV estimates are negative, small, and
not statistically significant. These results support the interpretation that electrification
is a productivity shock that benefits crop cultivation more than cattle grazing.

Electricity could impact farm production in ways that do not necessarily improve
yields. For instance, electrification could raise incomes and increase the local demand
for beef. Electrification could thus be a demand shock which benefits cattle grazing
without necessarily affecting the density of the cattle herd. Under those conditions,
farmers would find it profitable to expand cattle production instead of crop cultiva-
tion, which is the opposite of what our model predicts. Alternatively, the price of
grains may decrease in response to higher yields, maintaining cattle as a larger compo-
nent of the revenue of the farm relative to grains. We therefore test crop versus cattle
production’s contributions to farm revenue in column 3, which uses the cattle share of
the total farm production value as the dependent variable. The IV estimate implies that
a 10 pp increase in electricity infrastructure leads to a 2.4 percentage point reduction in
cattle production as a proportion of the total value of production on the farm. Farmers
increase crop production substantially more than cattle production in response to an
increase in electrification.
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7.3 Changes in Land Use Decisions

Our model predicts that farmers will increase the share of farmland allocated to crop
cultivation and decrease land allocated to cattle pasture after receiving the positive
shock to crop cultivation productivity. Further, the increase in cropland will not fully
offset the decrease in pastureland because of differences in land-intensity and factor
market constraints. Within farms, the demand for total land across all agricultural
uses will fall as a result. Electrification and increased crop productivity will produce
land-sparing effects.

In contrast to these clear predictions on land use within farms, the model delivers am-
biguous predictions regarding the effects of electrification on the expansion of farming
as a whole. Farmland may expand or contract depending on whether electricity bene-
fits farm or non-farm sectors more.

Table 7 shows the effects of electrification on land use. Columns 1–3 show changes in
the share of land within farms allocated to pastures, cropland, and native vegetation,
respectively. The coefficients’ signs are in line with our model’s predictions. When a
county gets electrified, there is a clear shift away from pastures in favor of cropland. A
10 percentage point increase in electrification lowers the share of farmland in pastures
by 3.7 percentage points, and increases the share allocated to grains by 1.5 percentage
points. The cropland expansion is smaller than the reduction in pastures, corroborating
the land-sparing prediction of our model. This leads to a net positive effect on native
vegetation increasing its land-share within farms by 3.9 percentage points (column
3). In sum, a positive productivity shock to crop cultivation has a land-sparing effect
within farms, which protects native vegetation.

Next, column 4 shows the effects of electrification on farmland expansion. The nega-
tive coefficient in column 4 implies that farmland expands less rapidly once counties
get electrified. A 10 percentage point increase in electricity infrastructure lowers the
county’s share of farmland by 4.7 percentage points. Our model would explain this
negative coefficient as evidence that access to electricity improves farmers’ outside op-
tions more than the returns to agriculture, on average.19.

7.3.1 Net Effect on Total Native Vegetation Inside and Outside Farms

The Census of Agriculture, by definition, does not report land-use outside farms, which
prevents us from directly estimating the effect of improving crop productivity on total
(county-wide) native vegetation. However, we can combine the estimates in columns

19One might also be interested in the direct effect of the change in agricultural productivity following
increased access to electricity. We also provide IV results with electricity as an IV for endogenous
productivity–log grain production per hectare–in appendix E.
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Table 7: The Effects of Electricity on Land Use

(1) (2) (3) (4)

Dependent Variable
Pastures

Farmland
Cropland
Farmland

Native Vegetation
Farmland

Farmland
County Area

IV −0.371∗∗∗ 0.146∗∗∗ 0.385∗∗∗ −0.472∗∗∗

[0.125] [0.052] [0.128] [0.134]

OLS 0.028 0.000 0.033 −0.063∗∗

[0.020] [0.007] [0.028] [0.027]

Observations 10,860 10,860 10,860 10,860
Mean dep. var. 0.47 0.11 0.18 0.71

All regressions are weighted by the number of grid points in the county and include county fixed effects and a quartic polynomial
on the suitability index interacted with time fixed-effects. Standard errors clustered at the county level in brackets.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

3 and 4 of Table 7 with other data moments to estimate total effects on county-wide
native vegetation. Let VT denote total native vegetation, VI native vegetation inside
farms, and k(C− F) native vegetation outside of farms, expressed as a fraction k ∈ [0, 1]
of the difference between county area C and farmland F. This notation gives us an ac-
counting identity for native vegetation: VT = VI + k(C − F), which we can use to
derive an expression for the effect of electrification on total native vegetation20:

∂(VT/C)
∂Ω

=
∂(F/C)

∂Ω
·
(

VI

F
− k
)

︸ ︷︷ ︸
extensive-margin effect

+
∂(VI/F)

∂Ω
· F

C︸ ︷︷ ︸
intensive- margin effect

, (8)

All terms on the right-hand side of (8) are reported in Table 7 other than the share of
native vegetation outside of farms, k. Column 4 provides estimates of ∂(F/C)

∂Ω and the
mean F

C , whereas column 3 provides estimates of ∂(VI/F)
∂Ω and the mean VI

F . We use these
to calculate the total effect on native vegetation in table 8 under different assumptions
about the value of k.

Column 2 presents our preferred estimate, in which we infer the value of k by combin-
ing data from the census of agriculture with satellite data.21 Under this assumption of
k = 0.86, our regression estimates imply a 10 percentage point increase in electrifica-
tion increases the county’s share of native vegetation by 5.95 percentage points.22

20See appendix A.2 for the derivation.
21The census data imply that native vegetation inside farms accounts for 0.71× 0.18 = 13% of the typical

county’s area. In the satellite data, native vegetation accounts for 38% of the typical county. Therefore,
the share of native vegetation outside of farms should be roughly (0.38 - 0.13)/(1 - 0.71) = 86%.

22To calculate the standard error of this linear combination of regression coefficients, we treat the sample
averages F

C and VI
F as constants. To obtain the covariance between the estimates of ∂(F/C)

∂Ω and F
C , we

stack observation on outcomes and fully interact equations 6 and 7 with an indicator for the outcome.
Alternatively, we can calculate the standard errors by bootstrapping, which yields very similar results
to the ones we report.
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Table 8: Effect of Electrification on Total Native Vegetation

Assumed native vegetation cover outside of farms

(1) (2) (3) (4)
Full Cover Implied by data Equal Cover No cover

(k = 1) (k = 0.86) (k = 0.18) (k = 0)

IV 0.661∗∗∗ 0.595∗∗∗ 0.274∗∗∗ 0.189∗

[0.108] [0.097] [0.091] [0.104]

OLS 0.075∗∗∗ 0.066∗∗∗ 0.023 0.012
[0.025] [0.023] [0.020] [0.021]

This table presents the effects of electrification on total native vegetation for different assumptions regarding the state of native
vegetation outside of farms, which we do not observe with the Census of Agriculture data. The effects are weighted averages of
the marginal effects in farmland and native vegetation inside farms, shown in Table 7. The weights are, respectively, the share of
farmland (sample mean: 0.71) and the difference between the shares of native vegetation inside (sample mean: 0.18) and outside
of farms (denoted by k in equation (8)). We have no data on this last share, so we make four assumptions: in column 1, we assume
that non-farmland is fully covered by native vegetation (k = 1); in column 2, we assume that k = 0.86, which is what satellite and
census of agriculture data jointly imply; Column 3 assumes that non-farmland and farmland have the same share of native vege-
tation (k = 0.18); and Column 4 assumes that non-farmland has no native vegetation (k = 0). To obtain the covariances needed for
computing the standard errors, we re-estimate the regressions in Table 7 stacking the outcomes and estimating the both marginal
effects jointly in one regression.

Since k is unknown, columns 1 and 4 provide upper and lower bounds on this esti-
mate. Since the estimate of ∂(F/C)

∂Ω is negative, assuming that all land outside of farms
is covered by native vegetation, or k = 1, gives an upper limit to the effect on total
native vegetation. Assuming k = 0 yields a lower limit. The upper limit displayed
in column 1 implies that a 10 percentage point increase in electrification increases the
share of native vegetation by 6.6 percentage points. If land outside farms is entirely
deforested (k = 0), the effect decreases to 1.9 percentage points, and is statistically sig-
nificant only at the 10% level (column 4). Column 3 assumes that the share of native
vegetation is equal within and outside farms, and this yields an effect of 2.7 percentage
points (p<0.01).

To assess the magnitude of a 5.95 percentage point increase in native vegetation, it is
helpful to consider to overall state of native vegetation in Brazil. In 1985, the midpoint
of our study period, 76% of Brazil’s area was covered by native vegetation according
to the satellite-based land use classification that we use (see section 5). By 2006, that
figure had dropped to 69%; a loss of 7 percentage points. This implies that without
the increase in agriculture productivity brought about by the expansion of rural elec-
trification in Brazil between 1970 and 2000, the rate of deforestation (or loss in natural
vegetation) would have been almost twice as large. Our estimates suggest that instead
of a 7 percentage point decrease in native vegetation between 1985 and 2005, we might
have seen a (5.9+7) = 12.9 percentage point loss, if farms had not received that access
to electricity which permitted them to move away from cattle grazing.

This effect size is comparable to estimates of the effects the most prominent package of
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conservation policies implemented in the mid-2000s to curb deforestation in the Ama-
zon that is known by the Portuguese acronym PPCDAM. This policy package included
heavier penalties for illegal deforestation and tighter enforcement of environmental
regulations(Burgess et al., 2019; Assunção et al., 2015, 2019a). Assunção et al. (2015)
estimate that deforestation rates would have more than doubled in the absence of this
package of policies.

7.3.2 Long run

In the results presented thus far, the outcome variables are lagged by five years on
average to allow for the effects of electrification on farms to materialize. Our model
argues that farmers relinquish cattle grazing to focus on growing crops. This occurs
because farmers are capital-constrained and cannot simultaneously expand their busi-
ness along multiple margins. This raises the possibility that perhaps the gains to native
vegetation we observe are short-lived, and once farmers’ incomes increase and their
credit constraints are relaxed, the land use effects would revert. To examine this possi-
bility, we re-estimate the effects of electrification on land use in a similar way as Table
7, but increase the lag between the measure of electricity infrastructure and the land
use outcomes to approximately 25 years.

The results show that the short-run effects on land use do not dissipate over time.
Within farms, the effect on pastures (column 1) is similar to the short-run results: A 10
percent increase in electrification lowers the share of farmland allocated to pastures by
3.5 percentage points 25 years later. The effect on cropland (column 2) drops to 0.9 from
1.5 percentage points, and loses statistical significance. The point estimate of the effects
on native vegetation (column 3) are now even larger than the short-run effects (though
not statistically significantly larger): a 10 percent increase in electrification leads to a 4.8
percentage point increase in the proportion of farmland kept under native vegetation
25 years later. Finally, the point estimate of the effects on farmland expansion (column
4) are smaller: the coefficient drops from 4.7 to 3.7 percentage points for a 10 percent
increase in infrastructure, but is still statistically significant (the point estimates are
not statistically significantly different) . In summary, an increase in crop productivity
still has a land-sparing effect even 25 years later, and the patterns of land use changes
between pasture, grains and native vegetation is exactly as predicted by the model.

7.3.3 Effects on Satellite-based Measures of Land Use

We now study the effects of electrification on land use as measured by classification
of satellite images taken between 1985 and 2005. The main advantage of satellite mea-
surements is that they contain information on land use in the entire country, not only
within farms. They also allow us to study long-run changes, as we merge the electric-
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Table 9: Long Run Effects of Electricity on the Allocation of Land: Census of Agricul-
ture Data

(1) (2) (3) (4)

Dependent Variable
Pastures

Farmland
Cropland
Farmland

Native Vegetation
Farmland

Farmland
County Area

IV −0.346∗∗∗ 0.089 0.476∗∗∗ −0.374∗∗∗

[0.080] [0.064] [0.128] [0.107]

OLS −0.023 −0.020∗∗ 0.088∗∗∗ −0.095∗∗∗

[0.019] [0.008] [0.025] [0.022]

Observations 6,516 6,516 6,516 6,516
Mean dep. var. 0.48 0.11 0.16 0.75

This table is similar to Table 7, except that the dependent variables are forward-lagged by two decades. As a result, the number of
observations drops because we loose two periods of our panel of counties. The corresponding first-stage coefficient is 0.406 (s.e.
0.083; partial F-statistic 24.11). This Table confirms that the findings of Table 7 do not apply just in the short run. All regressions
are weighted by the number of grid points in the county, and include county fixed effects, year fixed effects, and directly control
for a quartic polynomial on the suitability index. Standard errors clustered at the county level in brackets.

ity infrastructure data to satellite images captured 25 years later. However, unlike the
agricultural census data, these images cannot distinguish between areas within and
outside farms, and are therefore not as informative about the mechanisms posited in
our theory of land use. When working with satellite data, we therefore measure land
use as proportion of the county area rather than fractions of farmland.

Table 10 displays the results. These regressions show strong evidence of pasture-to-
crop conversion. The share of county area allocated to pastures decreases by 1 percent-
age point with a 10 pp increase in electrification (column 1), while the share of cropland
increases by 1.3 percentage points. The coefficient estimate on column 3 suggests that
the share of forest land decreases by 0.09 percentage points, but this effect is very small
and not statistically significant. The satellite data largely corroborates the changes in
the land use patterns we observed in the waves of the agricultural census data. Im-
provements in crop productivity brought about through farm electrification facilitate a
shift away from cattle grazing and into crop-farming and indirectly protects the forest,
and that protection persists over 25 years.

7.4 Effects on capital usage in crop cultivation

In our land-use model, electrification increases the marginal product of capital—specifically,
capital necessary for crop farming. This capital could be one of a number of fixed cost
factors of production used more intensively in crop farming than grazing–tractors, ir-
rigation, human capital, etc. Consistent with an increase in the marginal product of
capital used for crop production, Table 11 shows evidence that electrification increases
usage of capital goods employed mostly in crop cultivation. Columns 1 and 2 show
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Table 10: Long Run Effects of Electricity on the Allocation of Land: Satellite Data

(1) (2) (3)
Dependent Variable Pastures

County Area
Cropland

County Area
Forest

County Area

IV −0.097∗∗∗ 0.127∗∗∗ −0.009
[0.021] [0.035] [0.028]

OLS −0.010∗ 0.008∗∗ 0.002
[0.006] [0.004] [0.004]

Observations 6,516 6,516 6,516
Mean dep. var. 0.50 0.07 0.37

This table uses remote sensing data made available by the Mapbiomas project, which classifies pixels from Landsat images yearly
from 1985 through 2017 into land use categories. Outcomes are forward-lagged by 25 years with respect to the electricity data. The
sample is the same as the sample used in Table 9. All regressions are weighted by the number of grid points in the county, and in-
clude county fixed-effects, and directly control for a quartic polynomial on the hydropower suitability index interacted with time
fixed-effects.
Standard errors clustered at the county level in brackets. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

that farmers invest more in crop-related electricity-intensive capital equipment–grain
storage facilities (which requires temperature and humidity control) and irrigation–
as electricity becomes available. These two capital goods are particularly informative
about the specific mechanism posited in our model, as not only they are related to
crops, they also directly require energy which is facilitated by electrification. The mean
effects are large: a 10 percent increase in electricity infrastructure leads to a 36-percent
increase (at the mean) in the number of grain silos and a 19-percent increase in the
proportion of farms with irrigation.

Columns 3–5 show that electrification increases the usage of other crop-related capital
goods that do not directly rely on electricity. This is consistent with farmers intensify-
ing their cropping activities after electricity arrives. The IV point estimates imply mean
effects of 8 percent for planting and harvesting machines, 10 percent for plows, and 2.6
percent for tractors (the coefficient for tractors is not statistically significant). These
results are consistent with the intensification of cropping highlighted in our model,
which is the specific mechanism by which demand for agricultural land decreases
within farms. Increased electricity infrastructure enables farmers to adopt technolo-
gies and employ capital that would not be feasible otherwise.

7.5 Testing the Capital Constraints Assumption

A key assumption in our theoretical framework is that farmers’ ability to respond to
productivity shocks is limited because of factor market imperfections. We model these
imperfections as credit constraints, which is a well documented feature of developing
economies, especially in rural contexts (see, e.g., Banerjee and Duflo, 2005; Burgess and
Pande, 2005; Conning and Udry, 2007). Furthermore, as discussed in section 2, access
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Table 11: The Effects of Electricity on Crop-related Capital Use

Dependent Variable Energy-intensive capital
goods

Other crop-related capital goods

(1) (2) (3) (4) (5)
Grain

Storage
Facilities

Percentage
of Farms

with
Irrigation

Planting and
Harvesting
Machines

Plows Tractors

IV 102.976∗∗∗ 12.738∗∗∗ 7.955∗∗ 21.476∗∗∗ 6.561
[17.530] [2.820] [3.631] [5.570] [4.528]

OLS 13.647∗∗∗ 2.597∗∗∗ 0.231 1.333 1.300
[2.827] [0.453] [1.113] [1.475] [1.302]

Observations 10,860 10,860 10,860 10,860 10,860
Mean dep. var. 27.34 6.16 10.11 20.46 22.94

Notes: The table shows evidence, consistent with our model’s assumptions and predicitons, that electricity infrastructure in-
creases the usage of capital that supports crop cultivation, in particular grains. Grain storage facilities, machines, plows, tractors
are normalized by county area (measured in 10,000 hectares). In each column, the first row shows results from our preferred IV-
fixed effect specification, and the second row shows OLS, fixed-effects results. All regressions are weighted by the number of grid
points in the county, and include county fixed effects, year fixed effects, and directly control for a quartic polynomial on the suit-
ability index (see Table 5). Standard errors clustered at the county level in brackets.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

to credit by Brazilian farmers has been historically low. We now provide evidence
of credit constraints faced by Brazilian farmers during our sample period, using two
different approaches and data sources.

First, we study how farming investments respond to rainfall shocks in the recent past,
which we treat as an exogenous source of income for farmers that effectively mim-
ics the experimental ideal of granting cash to randomly selected farmers (Rosenzweig
and Wolpin, 1993). In the absence of credit market imperfections, past fluctuations in
rainfall (or cash drops) should not affect current investment decisions (Karlan et al.,
2014). We collect historical precipitation data from Matsuura and Willmott (2012) and
construct a measure of rainfall shocks based on deviations from a county-specific his-
torical means (details in appendix C). We then run regressions of the form:

yct =
0

∑
k=−4

βkrc,t−k + δXc,t + θc + αt + εc,t , (9)

where rc,t−k is our measure of a rainfall shock in county c, period t− k.

Table 12 shows that transitory rainfall shocks have persistent effects on yields, and on
investment in capital goods. Investment in tractors, plows, planting and harvesting
machines and grain storage facilities all initially decrease, but then rebound to increase
by more than the initial fall in periods following positive rainfall shocks. Grain yields
are larger two decades after the rainfall shock, even after we control for contemporane-
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ous rainfall. These persistent effects on investments are inconsistent with perfect credit
markets.
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Table 12: Testing Credit Constraints using Rainfall Shocks

(1) (2) (3) (4) (5) (6) (7)
Grain Yields

(log)
Value of

Production Per
Hectare (log)

Gross Production
Value (log)

Tractors Plows Planting and
Harvesting
Machines

Grain Storage
Facilities

shock at t 0.010∗∗∗ 0.011∗∗ 0.019∗∗∗ −1.102∗∗∗ −0.474∗∗ −1.033∗∗∗ −7.507∗∗∗

[0.003] [0.005] [0.005] [0.163] [0.222] [0.142] [0.667]

shock at t-1 0.045∗∗∗ 0.015∗∗ 0.009 1.783∗∗∗ −0.078 0.239 −1.861∗∗

[0.004] [0.006] [0.006] [0.192] [0.233] [0.199] [0.889]

shock at t-2 0.017∗∗∗ 0.029∗∗∗ 0.013∗∗∗ 1.844∗∗∗ 3.186∗∗∗ 1.348∗∗∗ 12.245∗∗∗

[0.003] [0.005] [0.005] [0.172] [0.300] [0.150] [0.979]

shock at t-3 −0.019∗∗∗ 0.021∗∗∗ 0.029∗∗∗ −0.298 0.593∗∗ −0.149 3.744∗∗∗

[0.003] [0.006] [0.005] [0.189] [0.236] [0.166] [0.837]

shock at t-4 −0.004 0.007 0.017∗∗∗ 1.147∗∗∗ 0.787∗∗∗ 1.792∗∗∗ −1.058
[0.004] [0.006] [0.006] [0.193] [0.300] [0.206] [0.654]

Observations 10,701 10,855 10,855 10,855 10,855 10,855 10,855
Mean dep. var. 0.0657 12.54 16.61 22.94 20.46 10.11 27.35

This table tests our model’s assumption that farmers are constrained in (at least) one production factor other than land. We use past rainfall shocks as a measure of (as good as random) capital drops
to farmers. Columns 1–3 show that past (positive) rainfall shocks affect current production, even after we control for current shocks. The remaining columns show that these past rainfall shocks affect
investment: Grain storage facilities, machines, plows, tractors are divided by county area (measured in 10,000 hectares). Taken together, these results indicate that exogenous variation in past income
affect current production decisions. This is not consistent with an economy without frictions in credit markets. To construct our measure of rainfall shock, we use historical precipitation data from
Matsuura and Willmott (2012). See appendix C for details. All regression include county fixed effects and year fixed effects. Controlling for a quartic polynomial on the suitability index interacted with
year dummies (like we do in the analysis using the IV-fixed effect approach) does not change the results. Standard errors clustered at county level in brackets.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 13: The Effects of Electricity on the Allocation of Land: The role of banks

(1) (2) (3) (4)

Dependent Variable
Pastures

Farmland
Cropland
Farmland

Native Veg
Farmland

Farmland
County Area

Panel A: IV estimates
Electricity Infrastructure −0.384∗∗∗ 0.151∗∗∗ 0.395∗∗∗ −0.493∗∗∗

[0.130] [0.054] [0.132] [0.140]

Electricity Infrastructure x Bank Branches 0.336∗ −0.120 −0.264∗ 0.573∗∗

[0.188] [0.087] [0.155] [0.243]

Panel B: Effects at the 75th percentile of Bank Branches distribution (0.55 banks per 10,000 hectares)

−0.199∗∗ 0.085∗∗ 0.250∗∗∗ −0.177
[0.092] [0.042] [0.088] [0.118]

Observations 10,860 10,860 10,860 10,860
Mean dep. var. 0.47 0.11 0.18 0.71

This table shows how the heterogeneity of treatment effects on land-use by how credit-constrained farmers are. We use the den-
sity of bank branches (number of bank branches per 10,000 hectares) to proxy for access to credit. Panel A shows the IV coeffi-
cients. We our modeled infrastructure variable interacted with the number of bank branches per 10,000 hectares as an additional
instrument for the interaction term. Consistent with the implications of the model presented in section 4, the interaction term is
roughly the size of the coefficient on electricity infrastructure: ie 1 bank branch per 10,000 hectares reduces the effect of full ex-
pansion of electricity access to nearly 0. In panel B, we compute the implied effects of electricity infrastructure for a county at the
75th percentile of the distribution of bank branches density (0.55 bank branches per 10,000 hectares. The 25th percentile is zero
bank branches per 10,000 hectares. All regressions are weighted by the number of grid points in the county, and include county
fixed effects, year fixed effects, and directly control for a quartic polynomial on the suitability index (see Table 5). Standard errors
clustered at the county level in brackets. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

We construct a second test of credit market imperfections using the idea that in our
model, farmers who are not credit constrained should not have to substitute pastures
for cropland upon receiving a positive productivity shock to crop cultivation. We test
that prediction by adding an interaction term between electricity infrastructure and the
density of bank branches in the county to our main regression.23 If the number of bank
branches is a good proxy for local credit availability,24 then we should observe smaller
substitution away from pastures in such areas when electricity arrives.

Table 13 shows that the presence of banks change the effect of electrification on land-
use in exactly that direction. In Panel A, columns 1 and 2 show that an increase in credit
availability leads to less substitution of pastureland for cropland. The coefficients on
the interaction terms are opposite-signed to the main effects, which implies that elec-
trification has smaller effects on pastures and cropland in areas where credit is more
available to farmers. As a result, the productivity shock has a less pronounced effect
on native vegetation, as indicated by the negative coefficient on the interaction term

23In this specification, we directly control for the density of bank branches, and instrument the interac-
tion term using the IV of our modeled infrastructure variable interacted with bank branches.

24This exercise is inspired by Burgess and Pande (2005), who study a government-led expansion of bank
branches in India and show that the presence of banks expands access to credit in rural areas. Like
India, the expansion of banking in Brazil was also led by public banks Sanches et al. (2018). Our
exercise is analogous to that of Jayachandran (2006), who studies how the sensitivity of agricultural
wages in India with respect to crop yields changes with access to banking.

32



in column 3. Panel B shows that in counties at the 75th percentile of the distribution
of bank branches density (0.55 bank branches per 10,000 hectares), electrification pro-
duces only two thirds the effect on native vegetation compared to counties at the mean.
Finally, column 4 shows that counties with more bank branches per hectare display a
faster expansion of farmland than counties with less access to capital, highlighting the
importance of credit to agriculture. These results are in line with the mechanism we
posit: that capital constraints are important for restricting the expansion of cattle graz-
ing. Assunção et al. (2019b) study the effects of a policy that restricts Brazilian farmers’
credit access, and also finds that it reduces deforestation.

8 Conclusion

We show that electrification and the resulting agricultural productivity gains to crop-
ping in agriculture slowed the rate of deforestation in Brazil. We present evidence that
the underlying mechanism for these effects is changes in land use within farms, as
well as a slower expansion of farmland once productivity improves via rural electri-
fication. Access to electricity helped to modernize agriculture in Brazil as it enabled
farmers to abandon land-intensive practices, and operate with higher capital-to-land
ratios. Importantly, this helped preserve an important natural resource. This decrease
in deforestation relies on two key contextual features highlighted by our model: (1) the
productivity shock differentially impacted cropping over cattle grazing which requires
more land, and (2) factor (credit in our context) constraints which made it difficult for
farmers to respond to productivity improvements on the extensive margin.

Our analysis has some limitations. First, forest cover is not the only relevant envi-
ronmental outcome when studying the intensification of agriculture. The use of pes-
ticides and fertilizers, typical in intensive agriculture, can also impose external costs
on plant, animal, and human populations (Dias et al., 2019; Dasgupta, 2021). In that
sense, the aggregate, net environmental benefits of intensification may be smaller than
our estimates suggest. On the other hand, our analysis ignores the (likely) positive
effects of improving productivity of Brazilian farmers on forests in other countries.
Brazil is a major commodity producer–“the world’s food basket”–, it is likely that an
increase in Brazilian agricultural productivity has the potential to spare land elsewhere
through general equilibrium effects as global beef prices respond to decreases in land
allocations for grazing (Baylis et al., 2013). In addition, electricity may cause structural
change in the manufacturing sector impacting the demand for labor and/or capital
which could also impact the agricultural sector–these general equilibrium effects are
not observable given our data and are outside of the scope of our study.

These limitations notwithstanding, our results have important implications for envi-
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ronmental policymaking. Many popular conservation policies, such as designating
areas for protection, can cause “leakage” by displacing deforestation to unregulated
areas where enforcing fines and bans are difficult (Burgess et al., 2012, 2019; Harstad
and Mideksa, 2017). Our results show that conservation policies can be successful if
they account for the economic interest of user groups. Governments and other envi-
ronmental organizations are increasingly experimenting with approaches such as di-
rect payments for ecosystem services (Porras et al., 2012; Jayachandran et al., 2017) or
interventions that improve farm productivity. Our findings suggest that support to
increase farm productivity has the potential to reduce deforestation.
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Appendices

A Derivations

A.1 Solution for model in section 4

Proposition 1. The optimal farmer’s choices, H∗c (Ω), H∗g(Ω), K∗(Ω), satisfy equations (2a)–
(2d).

Proof. The solution to the farmer’s problem is given by the set of first-order conditions

wrt Hc : ΩK∗FH(H∗c ) = (1 + λ)p (10)

wrt Hg : FH(H∗g) = (1 + λ)p (11)

wrt K : ΩF(H∗c ) = (1 + λ)r (12)

constraint rK∗ + p(H∗c + H∗g)−M = 0. (13)

Result 1. ∂K∗
∂Ω and ∂H∗c

∂Ω have the same sign.

Proof. It suffices to show that ∂K∗
∂H∗c

> 0. To see this, note that (10) and (12) imply that

K∗ = p
r

F(H∗c )
FH(H∗c )

; Since we assume that FHH < 0 and FH > 0, we have that

∂K∗

∂H∗c
=

p
r
(FH(H∗c ))

2 − F(H∗c )FHH(H∗c )

(FH(H∗c ))
2 > 0 (14)

Result 2. Let Φ(Ω) ≡ Π(Ω, K∗(Ω), H∗c (Ω), H∗g(Ω)). Φ(Ω) is strictly convex.

Proof. We must show that, for all Ω and h, Φ(Ω + h) > Φ(Ω) + hΦ′(Ω).

Φ(Ω + h) = Π(Ω + h, K∗(Ω + h), H∗c (Ω + h), H∗g(Ω + h))

> Π(Ω + h, K∗(Ω), H∗c (Ω), H∗g(Ω)) (by definition of K∗, H∗c , H∗g)

= (Ω + h)K∗F(H∗c ) + F(H∗g)− rK∗ − p(H∗c + H∗g)

= Π(Ω, K∗(Ω), H∗c (Ω), H∗g(Ω)) + hK∗F(H∗c )

= Φ(Ω) + hΦ′(Ω) (by the envelope theorem)
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Now, since Φ(Ω) is convex, ∂2Φ
∂Ω2 > 0. But

∂2Φ
∂2Ω

> 0 ⇐⇒ ∂K∗

∂Ω
F(H∗c ) + K∗

(
FH(H∗c )

∂H∗c
∂Ω

)
> 0

Since F(), FH(), and K∗ > 0, either ∂K∗
∂Ω or ∂H∗c

∂Ω , or both, are positive. By result 1, we
conclude that both must be positive. That proves equations 2a and 2b.

Once we have established equations 2a and 2b, it is easy to show equations 2d and 2d.
From equation 13:

∂K∗

∂Ω
=− p

r
∂(H∗c + H∗g)

∂Ω
> 0

⇐⇒
∂(H∗c + H∗g)

∂Ω
< 0 (which proves equation 2d)

⇒
∂H∗g
∂Ω

< 0 (which proves equation 2c)

A.2 Derivation of equation 8

Let VT denote total native vegetation, VI native vegetation inside farms, and k(C− F)
native vegetation outside of farms, expressed as a fraction k ∈ [0, 1] of the difference
between county area C and farmland F. This notation gives us an accounting identity
for native vegetation: VT = VI + k(C − F). Dividing both sides of this identity by C
and multiplying and dividing the first term by F yields

VT

C
=

VI

C
+ k

C− F
C

⇐⇒ VT

C
=

VI

F
F
C
+ k

C− F
C

⇐⇒ ∂VT/C
∂Ω

=
∂VI/F

∂Ω
F
C
+

∂F/C
∂Ω

VI

F
− k

∂F/C
∂Ω

⇐⇒ ∂VT/C
∂Ω

=
∂F/C

∂Ω
(

VI

F
− k) +

∂VI/F
∂Ω

F
C
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B Instrument construction: Probit

Table B.1 shows the probit regression used to rank the grid points in terms of their
hydropower suitability (see section 6).

Table B.1: Probit Regression for Hydropower Geographic Cost Parameters

Indicator for location has a river 0.012
[0.067]

Log of maximum flow accumulation 0.018
[0.013]

Average river slope 0.039
[0.031]

Maximum river slope 0.059∗∗∗

[0.012]

Amazon indicator −0.630∗∗∗

[0.106]

Observations 32,578
Notes: The dependent variable is an indicator for location has a hydropower plant. Standard errors clustered by county brackets.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

C Rainfall Data

In section 7.5, we use past rainfall realizations as exogenous shocks to farmer income.
We measure rainfall using historical precipitation data from Matsuura and Willmott
(2012). This is a gridded dataset with monthly precipitation measures from 1900 to
2012 with a 0.5-degree spatial resolution (approximately 50 kilometers at the equator).

To construct our measure of rainfall shock, we take a procedure similar to other to
other studies in the literature (see, e.g., Hidalgo et al., 2010). First, we assign each
county to the grid point that is closest to the county’s centroid. We then standardize
every county-month observation using the county’s historical data. Next, we sum up
these standardized monthly measure to the yearly level using county-specific month-
of-the-year weights. These monthly weights are calculated from the 1985 Census of
Agriculture, and capture the importance of each month of the year for that county’s
planting season. The weights are equal to the share of each crop on the country’s agri-
cultural production (in Reais) times the share of farmers that report planting that crop
on that month. Finally, we standardize the annual observations by county-year. Our
measure of rainfall shock therefore is the deviation from a county-specific historical
means.
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C.1 Instrument Validity

we check whether placement of power plants and transmission lines simulated by the
forecasting model can be predicted by farm production indicators in earlier years by
estimating equations of the form instrumentit = βoutcomei,t−1 + λt + θi + ξit.. Under
the null that our instrument is as good as random the estimates of β should be statis-
tically equal to zero. Results are shown in Table C.1. Almost all coefficients are small
in magnitude, suggesting that pre-existing production factors are not a major factor in
determining electricity placement.

The largest coefficient is the one associated with the share of cropland, which implies
that converting 100% of farm area into crops in one decade increases our instrument 0.2
a decade later. Four other coefficients are statistically significant, but their magnitudes
are small. Overall, past agricultural outcomes do not appear to be strong predictors of
the instrument.

D Robustness Checks

D.1 Lee, Moreira, McCrary, and Porter (2020) Confidence Intervals
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Table C.1: Instrument Validty

Dependent Variable: Instrument at t

Outcomes at t− 1 coefficient std. error

Land Use – Census of Agriculture
Farmland/County Area −0.042∗∗∗ 0.011

Pastures/Farmland −0.028 0.020

Cropland/Farmland 0.198∗∗∗ 0.036

Native Vegetation/Farmland −0.005 0.010

Land Use – Satellite Data
Pastures/County Area 0.025 0.031

Cropland/County Area 0.084 0.061

Forest/County Area −0.038 0.040

Farm Production and Capital Usage
Grain Yields (log) 0.017∗∗∗ 0.005

Heads of Cattle Per Hectare 0.006∗∗ 0.002

Share of Cattle Production Value −0.037∗∗∗ 0.011

Grain Storage Facilities −0.000 0.000

Percentage of Farms with Irrigation 0.002∗∗∗ 0.001

Planting and Harvesting Machines −0.000 0.000

Plows −0.000 0.000

Tractors −0.000 0.000

This table shows the extent to which our instrument—the forecast expansion of electricity infrastructure—can be predicted by
agricultural indicators in earlier years. Each row shows results from a regression of the form instrumentit = βoutcomei,t−1 + θi +
λt + εit. Sample size of each regression is 6,516. Standard errors clustered by county.
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Table D.1: Lee, Moreira, McCrary, and Porter 95% Confidence Intervals

Dependent Variable β̂IV 95% CI

Grain Yields (log) 0.948 [0.49 , 1.40]
(0.41 , 1.47)

Heads of Cattle Per Hectare −0.399 [−0.91 , 0.11]
(−0.99 , 0.187)

Share of Cattle Production Value −0.242 [−0.41 , −0.07]
(−0.43 , −0.05)

Percent of County Area in Farmland −0.472 [−0.73 , −0.21]
(−0.78 , −0.16)

Percent of Farmland in Pastures −0.371 [−0.62 , −0.13]
(−0.66 , −0.08)

Percent of Farmland in Grains 0.146 [0.04 , 0.25]
(0.03 , 0.26)

Percent of Farmland in Native Vegetation 0.385 [0.13 , 0.64]
(0.09 , 0.68)

Percentage of Farms with Irrigation 12.738 [7.21 , 18.26]
(12.09 , 13.39)

Grain Storage Facilities 102.976 [68.62 , 137.33]
(62.66 , 143.30)

Planting and Harvesting Machines 7.955 [0.84 , 15.07]
(−0.20 , 16.11)

Plows 21.476 [10.56 , 32.39]
(8.67 , 34.29)

Tractors 6.561 [−2.31 , 15.44]
(−3.86 , 16.98)

Notes: The table shows 95% confidence intervals based on clustered standard errors reported in the main text in brackets, and the
Lee et al (2020a) 95% confidence intervals in parentheses. As described in Lee et al. (2023) the tF procedure in most cases leads to
confidence intervals that are too large. Each row shows the results for one outcome.

46



D.2 Controlling for Geographical Factors

The presence of county-fixed effects in our analysis ensures that identification of treat-
ment effects uses only within-county variation. However, one possible concern with
our empirical exercise relates to the variation introduced by the geographic factors
used in the instrument: water flow, river gradient and the Amazon. To mitigate these
concerns, our preferred specification adds a control for a polynomial of the hydropower
suitability index interacted with time fixed-effects. The idea is to remove possible
trends that are specific to places with high, or low, suitability for hydropower both
in our hypothetical grid expansion and in the outcomes that we analyze. In this Ap-
pendix, we provide a more detailed analysis of what happens to our instrument when
we control for different combinations of geographical and time-varying factors.

Table D.2 reports the first-stage of our 2SLS estimation when we control for all possible
combinations of the geographical factors, time-varying factors, and their interactions.
25 Row 0 reports the first stage results when we control only for county fixed-effects
and time fixed-effects, reproducing table 5, column 1 of the main text. Next, row 1 di-
rectly controls for our measure of water flow interacted with the time-varying decade
budget. The coefficient and partial F-statistic barely change. Row 2 controls for inter-
actions of river gradient with decade budget, and so on.

Table D.2 reveals one weakness of our instrument. Controlling for interactions between
the Amazon dummy and time-varying factor renders our instrument weak. This can
be seen in rows 3–5, 8, 10, 11, and 13. The Amazon-specific time trends simply ab-
sorb too much variation from our instrument. That can be explained by the fact that
the Amazon plays an important role in the probit that determines the hydropower
suitability of grid points, because it is expensive to build hydropower plants in these
counties due to dense forests. Our instrument, therefore, displays little variation in
those counties, and actual electricity infrastructure is also scarce.

One may wonder, therefore, if Amazonian counties could be removed from the sam-
ple. Although there are few Amazonian counties in the sample (130 out of 2,172),
these counties are large in area. Since our regressions use the number of grid points in
the county as weights, these counties effectively represent 59 percent of our weighted
sample. In this Appendix, we show how sensitive our results are to the presence of
Amazonian counties in the sample.

To assess our result’s sensitivity to the exclusion of the Amazon from the sample, we
group the Amazonian counties into three groups – one for each of the two largest
Amazonian states, Amazonas and Para, and one group for all other states. Each of

25(Lipscomb et al., 2013) perform a similar exercise, and table 1 of (Lipscomb et al., 2021) presents the
table for various versions of Amazon controls.
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Table D.2: Sensitivity Analysis by Directly Controlling for Geographic Factors in the
First Stage.

(1) (2)
Specification (description of control set added to
RHS)

Electricity Infrastructure Partial F-stat

0. No direct controls 0.456∗∗∗ 66.99
[0.056]

1. Water flow × decade budget 0.457∗∗∗ 67.20
[0.056]

2. River gradient × decade budget 0.446∗∗∗ 65.20
[0.055]

3. Amazon dummy × decade budget 0.139∗∗∗ 8.12
[0.049]

4. Water flow × decade budget and Amazon
dummy × decade budget

0.140∗∗∗ 8.02
[0.049]

5. River gradient × decade budget and Amazon
dummy × decade budget, water flow ×budget

0.139∗∗∗ 7.93
[0.049]

6. River gradient × decade budget and water
flow × decade budget

0.445∗∗∗ 65.52
[0.055]

7. Water flow × year dummies 0.457∗∗∗ 67.16
[0.056]

8. Amazon dummy × year dummies 0.136∗∗∗ 7.61
[0.049]

9. River gradient × year dummies 0.444∗∗∗ 64.32
[0.055]

10. Water flow × year dummies and Amazon
dummy × year dummies

0.138∗∗∗ 7.76
[0.049]

11. River gradient × year dummies and
Amazon dummy × year dummies

0.135∗∗∗ 7.39
[0.50]

12. Water flow × year dummies and river
gradient × year dummies

0.445∗∗∗ 64.73
[0.055]

13. River gradient × year dummies, water flow
× year dummies, and Amazon dummy × year
dummies

0.135∗∗∗ 7.35
[0.050]

14. Quartic suitability rank × year dummies 0.385∗∗∗ 36.29
[0.064]

Notes: This table reports the first-stage for various specifications that directly control for geographic factors and their interactions
with time fixed-effects. The dependent variable is the prevalence of electricity infrastructure in the county (fraction of grid points
within 50 kilometers of a transmission substation) measured from infrastructure inventories. Column 1 reports the coefficient and
standard errors clustered at the county level in brackets. Column 2 reports the partial F-statistic. In table 5 in the text, we report
row 0 in column 1 , and row 16 in column 2. All specifications include decade fixed effects and AMC fixed effects ∗ p < 0.10, ∗∗

p < 0.05, ∗∗∗ p < 0.01
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these groups roughly represent one-third of the Amazon land area. We then run the
first-stage regression excluding from the sample one subset of these groups at a time.

Table D.3 reports the results. Column 1 reproduces our baseline result (shown in Table
5, column 3). The next three columns remove one group of counties at a time. In
column 2 we remove from the sample all counties in Para, which account for 15 percent
of the weighted sample. The first-stage coefficient barely changes, and the F-statistic
drops from 36.3 to 26.8. We observe similar patterns in the next two columns, where
we remove from the sample counties in Amazonas (column 3), and on the remaining
states (column 4). In columns 5–7, we remove combinations of two groups of counties.
Removing Para and Amazonas, which together account for 58 percent of the Amazon,
still leaves us with an F-statistic of 18.6 (column 5). Removing any pair of groups
still yields F-stats above 10. In column 8 we remove all Amazonian counties, which
account for 59 percent of the weighted sample. Perhaps unsurprisingly, our instrument
becomes weak (F-statistic 6.1). To conclude, the Amazonian counties help the first-
stage regression, as removing them makes the first-stage weaker. Nevertheless, we are
able to exclude up to 44 percent of our sample – or 75 percent of the amazonian sample
– and still get meaningful first-stage results.

We proceed by checking the sensitivity of the second-stage results to excluding Ama-
zonian counties. Table D.4 replicates the main results, originally displayed in Tables
7 and 6 in the paper. In Panel A, we drop counties in Para and Amazonas (the cor-
responding first-stage regression is displayed in Table D.3, column 5). In Panel B, we
keep only counties in Amazonas (the corresponding first-stage regression is in column
6 of Table D.3). In Panel C we keep only counties in Para (the corresponding first-stage
regression is in column 7 of Table D.3), and in Panel D we exclude all counties in the
Amazon (note that the F-Stat is only 6.1 in panel D, so the instrument is weak. We
retain these results to show that the coefficient estimates remain stable).

Inspecting Table D.4, we see that both the IV estimates are quantitatively close to the
original estimates. Most specifications remain significant, with the exception of those
excluding all amazonian counties when the instrument has become weak. Comparing
results across samples should be done cautiously, because the complier subpopulation
may not be evenly distributed in across the territory. By changing the complier sub-
population, our LATE estimates will naturally change, even if the variation used to
identify the effects is as good as random. Still, it is reassuring to see that our conclu-
sions do not change even when we exclude the entire amazonian sample.
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Table D.3: First-Stage Results: Sensitivity to Exclusion of Amazonian States

Dependent Variable: Electricity Infrastructure

(1) (2) (3) (4) (5) (6) (7) (8)

Instrument 0.385∗∗∗ 0.346∗∗∗ 0.359∗∗∗ 0.315∗∗∗ 0.291∗∗∗ 0.255∗∗∗ 0.280∗∗∗ 0.118∗∗

[0.064] [0.067] [0.065] [0.063] [0.067] [0.058] [0.068] [0.048]

Amazonian States Included in the Sample
Para yes no yes yes no no yes no
Amazonas yes yes no yes no yes no no
Others yes yes yes no yes no no no

Grid Points 32,578 27,711 26,407 24,476 21,540 19,609 18,305 13,438
Counties 2,172 2,136 2,145 2,105 2,109 2,069 2,078 2,042
County-years 10,860 10,680 10,725 10,525 10,545 10,345 10,390 10,210

Partial F-stat 36.3 26.8 30.4 24.8 18.6 19.4 16.9 6.1
Notes: This table address the sensitivity to the exclusion of amazonian counties from our sample. To perform this exercise, we group amazonian counties in three groups. Column 1 includes all
counties, which reproduces the results of table 5, column 2 in the text. Columns 2–4 remove one group of counties at a time. Columns 5–7 remove two groups of counties at a time. Finally, column 8
removes all amazonian counties in the sample. Although one observation in the estimating sample is a county-year, all specifications are weighted by the number of grid points contained in the county.
All specifications include county fixed effects, time fixed-effects, and control for a quartic polynomial on the suitability index. Standard errors clustered at the county level in brackets. ∗ p < 0.10, ∗∗

p < 0.05, ∗∗∗ p < 0.01
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Table D.4: Sensitivity to Exclusion of Amazonian Counties

Land Use results Production results
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)

Panel A: Sample excludes Amazonian counties in Para and Amazonas states (F-statistic 18.6)
IV −0.327∗∗ 0.178∗∗ 0.262∗∗ −0.624∗∗∗ 0.885∗∗∗ −0.756∗∗ −0.352∗∗ −0.363 0.565∗∗ 0.381 −0.009 1.712∗∗ −1.155∗∗ −0.358

[0.161] [0.084] [0.123] [0.169] [0.324] [0.294] [0.143] [0.350] [0.243] [0.244] [0.194] [0.874] [0.463] [0.269]

Panel B: sample excludes all Amazonian counties except those in Amazonas State (F-statistic 19.4)
IV −0.307∗∗ 0.261∗∗∗ 0.655∗∗∗ −0.153∗ 1.620∗∗∗ −0.221 −0.224∗∗ −0.363 0.565∗∗ 0.381 −0.009 1.712∗∗ −1.155∗∗ −0.358

[0.146] [0.069] [0.223] [0.084] [0.429] [0.366] [0.113] [0.350] [0.243] [0.244] [0.194] [0.874] [0.463] [0.269]

Panel C: Sample excludes all Amazonian counties except those in Para State (F-statistic 16.9)
IV −0.574∗∗∗ 0.266∗∗∗ 0.344∗∗∗ −0.274∗∗∗ 1.297∗∗∗ −0.246 −0.296∗∗ −0.363 0.565∗∗ 0.381 −0.009 1.712∗∗ −1.155∗∗ −0.358

[0.177] [0.067] [0.133] [0.101] [0.307] [0.283] [0.118] [0.350] [0.243] [0.244] [0.194] [0.874] [0.463] [0.269]

Panel D: Sample Excludes all Amazonian Counties (F-statistic 6.1)
IV −0.363 0.565∗∗ 0.381 −0.009 1.712∗∗ −1.155∗∗ −0.358 −0.363 0.565∗∗ 0.381 −0.009 1.712∗∗ −1.155∗∗ −0.358

[0.350] [0.243] [0.244] [0.194] [0.874] [0.463] [0.269] [0.350] [0.243] [0.244] [0.194] [0.874] [0.463] [0.269]

Each panel removes groups of amazonian counties from the sample. Panel A excludes amazonian counties in Para and Amazonas states. The corresponding first-stages are displayed in Table D.3. All
regressions are weighted by the number of grid points in the county, and include county fixed effects, time fixed effects, and directly control for a quartic polynomial on the suitability index. Standard
errors clustered at the county level in brackets.
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Table D.5: Sensitivity to Exclusion of Center-West

Land Use results Production results

(1) (2) (3) (4) (5) (6) (7)
Pasture

Farmland
Cropland
Farmland

Native Vegetation
Farmland

Farmland
County Area Grain

Yields
(log)

Heads of
Cattle

Per
Hectare
of Pas-

tureland

Cattle
Produc-

tion
Value/Total
Produc-

tion
Value

IV −0.514∗∗∗ 0.244∗∗∗ 0.582∗∗∗ −0.303∗∗∗ 1.383∗∗∗ −0.642∗∗ −0.349∗∗∗

[0.179] [0.055] [0.178] [0.101] [0.311] [0.327] [0.126]

Observations 10,040 10,040 10,040 10,040 9,886 9,835 10,040
Mean dep. var. 0.45 0.11 0.18 0.70 0.04 1.09 0.27

Sample excludes counties from the Center-West region. The first-stage coefficient is 0.33 (clustered standard error 0.068), and par-
tial F-statistic 24.08. All regressions are weighted by the number of grid points in the county, and include county fixed effects,
time fixed effects, and directly control for a quartic polynomial on the suitability index. Standard errors clustered at the county
level in brackets.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

D.3 Exclusion of the Center West

In table 4, we perform an exercise where we check, region-by-region, decade-by-decade,
the rank correlation between hydropower suitability and agricultural outcomes. In
that exercise, we found that those correlations were higher for the Center-West region,
which could be a reason for concern. In table D.5 we exclude the Center-West region
from the sample and redo the analysis for the main outcomes. We find that the results
are qualitatively not affected by this exercise.

E Crop Productivity

Our main specifications provide us with an estimate of the impact of electrification
on land use. We show that electrification impacts land use through increased produc-
tivity and switching from cattle herding toward crop production. We may instead be
interested in the direct impact of crop productivity on agricultural land use and native
vegetation. We can estimate this relationship by substituting agricultural productiv-
ity (log grain yields per hectare) for our endogenous electricity measure, and instru-
menting for agricultural productivity using our engineering modeled electricity access
variable. We use the following system of equations similar to our main specification
in equations 6 and 7, estimated using Two Stage Least Squares, with Ac,t as log grain
production per hectare (productivity) within a county, decade, and Zc,t is our modeled
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Table E.1: First-Stage Results

Dependent Variable Log Grain Yields
(1) (2)

Instrument 0.571∗∗∗ 0.359∗∗∗

[0.098] [0.066]

Year dummies Yes Yes

Quartic suitability rank × year dummies No Yes

Observations 10,703 10,703
Number of Counties 2,171 2,171
Mean of Outcome 0.066 0.066
Partial F-stat 33.8 30.0

Notes: The dependent variable is the log of grain yields per hectare in a county. Column 2 adds controls that soak up variation
from our instrument–a quartic polynomial of the suitability index interacted with year dummies. We keep the specification in col-
umn 2 which matches column 2 from table 6 (our preferred specification throughout the paper). All specifications include county
fixed effects and are weighted by the number of grid points contained in the county. Standard errors clustered at the county level
in brackets. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

electricity instrument, and Yc,t+1 is land use in the next decade:

Act = α1
c + γ1

t + δZc,t + θ1Xc,t + ηc,t (15)

Yc,t+1 = α2
c + γ2

t + βÂc,t + θ2Xc,t + εc,t , (16)

Âc,t are the fitted values for productivity from the first stage regression (15), and by
Zct is our modeled electricity instrument. Note that both Zc,t and Ec,t are county-level
averages of grid point values. As in the main specifications, we therefore weight re-
gressions by the county’s number of grid points and cluster standard errors by county.
As in our preferred specification, we include interactions between the hydropower
suitability index and time fixed effects in both estimating equations, which flexibly
control for geography-specific trends.

The first stage in Table E1 shows that the modeled electricity instrument remains a
strong instrument for productivity with an F-statistic of 30. The second stage results in
Table E2 show that a 10% increase in grain yields leads to a 4 percentage point reduc-
tion in pasture land as a portion of farmland. Similarly, a 10% increase in productivity
increases cropland as a portion of farmland by 1.6 percentage points and native vege-
tation by 3.5 percentage points. Farmland decreases as a proportion of county area by
5.1 percentage points.
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Table E.2: The Effects of Agricultural Productivity on Land Use

(1) (2) (3) (4)

Dependent Variable
Pastures

County Area
Cropland
Farmland

Native Vegetation
Farmland

Farmland
County Area

log Grain Production −0.407∗∗∗ 0.155∗∗∗ 0.346∗∗∗ −0.511∗∗

[0.124] [0.037] [0.097] [0.228]

OLS −0.045∗∗∗ 0.016∗∗∗ 0.039∗∗ 0.004
[0.011] [0.004] [0.020] [0.010]

Observations 10,703 10,703 10,703 10,703
Mean dep. var. 0.47 0.11 0.18 0.71

Notes: The table shows how land use responds to a productivity shock (changes in log grain production per hectare). We use the
engineering modeled electricity variable as the instrument for productivity. The intensive margin–land use within farms–is ana-
lyzed in columns 1-3. The dependent variable in column 1 is the farm area in pastures divided by the county’s total farm area. The
dependent variable in column 2 is the grains harvested area divided by the total farm area. Grains include maize, soybeans, cot-
ton, wheat, beans, and rice. The dependent variable in column 3 is farm area in native vegetation divided by the total farm area.
Column 4 analyzes the extensive margin by using county’s farm area divided by the county’s total area as the dependent variable.
Standard errors clustered at the county level in brackets.
All regressions are weighted by the number of grid points in the county, and include county fixed effects, year fixed effects, and
directly control for a quartic polynomial on the suitability index (see Table 5)
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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